

SQL
COMMAND
ANALYSIS

User's
Guide

© Copyright Software Product Research 2000

All other product names, mentioned in this manual, are trademarks owned by
International Business Machines Corporation, Armonk, NY.

1 Functional description . 1
1.1 Statement extraction . 2
1.2 SQL EXPLAIN . 2

1.2.1 Statement text . 2
1.2.2 Statement Cost . 2
1.2.3 Statement Structure . 3
1.2.4 Statement Plans . 3
1.2.5 Statement Reference . 3
1.2.6 Explain Warnings . 4

1.3 Text analysis . 5
1.4 Object lists . 7
1.5 Object notes . 8
1.6 Analysis summary . 8
1.7 Operation . 9

1.7.1 User interface . 9
1.7.2 SQL/CA help . 9
1.7.3 Explain tables . 9
1.7.4 DB2 Connections . 9

1.8 SQL/CA - SQL/MF integration . 9
1.9 DB2 data modelling facility . 10

2 SQL/CA Installation . 11
2.1 Software Prerequisites . 11
2.2 Pre-installation tasks . 11

2.2.1 Prepare a VSE library . 11
2.2.2 Update LIBDEF and Standard Labels . 11
2.2.3 Prepare the SQL/CA Report Library . 11

2.3 Installing SQL/CA . 12
2.3.1 Preliminary Note . 12
2.3.2 Issue SETPARM for SPRLIB . 13
2.3.3 Upload the SQL/CA software . 13
2.3.4 Link SQL/CA . 13
2.3.5 Upload the SQLCA OPTIONS file . 13
2.3.6 Define the SQL/CA Report Library . 14
2.3.7 Define the SQL/CA components to CICS . 14
2.3.8 Update the CICS FCT . 14
2.3.9 Install SQL/CA in a database . 15
2.3.10 Update the VSE startup stream . 15
2.3.11 Update the VSE standard labels . 16
2.3.12 Upload the SQLCASRV startup sample job . 16

3 Using SQL/CA . 17
3.1 Using the SQL/CA interactive menu . 17
3.2 Analyze a VSE library member . 17
3.3 Analyze an ICCF library member . 17
3.4 Analyze a VOLLIE library member . 18
3.5 Analyze a DB2 package . 18
3.6 Analyze a QMF query . 18
3.7 Analyze an ISQL query . 18
3.8 Analyze an interactive query . 19
3.9 SQL/CA Librarian . 20

3.9.1 Searching the SQL/CA Report Library . 20
3.9.2 Processing the Report selection list . 21
3.9.3 Processing the analysis report . 22
3.9.4 Displaying the SQL/CA Glossary . 24

3.10 Invoking SQL/CA from a batch job . 25

4 The SQL/CA Server

. 27
4.1 Starting the SQL/CA server

. 27
4.2 Stopping the SQL/CA server . 27

5 Interpreting the analysis report . 29
5.1 Statement Execution Structure by block and parent . 29
5.2 Structure of Referential Constraint Statements . 29
5.3 Statement Cost Summary . 30
5.4 Statement Plan Summary . 31
5.5 Statement Execution Structure . 32
5.6 Statement Execution Detail . 33

5.6.1 Plan Detail . 33
5.6.2 Column Reference Details . 39

5.7 Predicate Analysis Warnings . 40

6 SQL/CA data modelling facility . 41

7 SQL/CA Glossary . 43

8 SQL/CA analysis warning messages . 53

9 SQL/CA object notes . 83

10 Predicate evaluation tables . 85
10.1 Datatype evaluation table . 85
10.2 Decimal precision evaluation table . 85
10.3 Predicate operator evaluation table . 86
10.4 Default filter factor table . 87

11 SQL/CA messages . 89

12 Index . 91

SQL Command Analysis Page 1

1 Functional description
SQL Command Analysis (‘SQL/CA’) is a software tool for DB2/VSE (previously known as SQL/DS).

Its primary purpose is to assist SQL programmers in producing efficient and well performing SQL
applications, by providing analysis services during program development. SQL/CA encourages SQL
developers to systematically analyze their applications in view of optimal SQL coding. This approach
will detect poorly designed SQL at an early stage and prevent many performance problems, that
otherwise would appear only when the program is moved into production.

SQL/CA examines the source text of the program, and therefore is able to signal SQL performance
deviations that cannot be detected by means of the traditional DB2 tuning procedures.

SQL/CA presents its findings in the form of an analysis report. The report is easy to read: it does not
require a highly technical background to be understood.

SQL/CA operates in the DB2/VSE environment and is capable of analysing:

- Assembler, Cobol, Fortran or PL/1 source programs, residing in a VSE, an ICCF or a VOLLIE library
- ISQL routines and QMF procedures
- Files containing SQL statements in DB2 Database Services format
- Designated DB2 packages in the currently connected database

Except when analyzing DB2 packages, SQL/CA operates on the text of the source program. DB2
packages are not referenced during statement analysis: application programs need not to be prepped
in order to be analyzed. However, the SQL statements must have correct syntax and the DB2 objects
(tables etc.) used by the application, must exist in the database connected during analysis.

Page 2 SQL Command Analysis

When analyzing a program, SQL/CA extracts the SQL statements, invokes DB2 EXPLAIN and performs
text analysis.

1.1 Statement extraction
All SQL statements that can be explained and the related host variable specifications are extracted
from the program source text or from the unloaded DB2 package. SQL statements that can be
explained are: SELECT, INSERT, UPDATE, DELETE and DECLARE CURSOR FOR SELECT |
INSERT.

1.2 SQL EXPLAIN

The SQL EXPLAIN statement is issued for all the extracted SQL statements and the resulting SQL
explain table data are converted from their encoded and numeric format into a textual and easily
readable analysis report. This report is stored in the SQL/CA Report Library with a 2-part
reportname (creator | packagename for packages filename | filetype for sources in a library). The
analysis library is processed online, using the SQL/CA Librarian which runs as a CICS transaction.

For each SQL statement, the analysis report provides following data obtained from the SQL Explain
tables:

1.2.1 Statement text

Prints the SQL statement in a manner that reflects the logical execution tree structure. If the
statement contains subqueries, they are formatted by statement block and calling block. The
indention level used when printing a given subquery, corresponds to the nesting level of the
query within the logical execution tree.

1.2.2 Statement Cost

Reports the cost of statement execution, as estimated by DB2. If the statement consists of
multiple queries, a number of calculations are carried out in the Cost paragraph, in order to show
the cost associated with each subquery, taking into account its execution characteristics within
the logical execution tree. SQL/CA will also indicate the subquery with the highest cost.

SQL Command Analysis Page 3

1.2.3 Statement Structure

Reports:

- from which query block a dependent block is called, if the statement contains embedded
queries

- the estimated number of rows processed
- the estimated number of execution iterations

If the statement consists of multiple queries, the Structure paragraph will compute the
projected execution properties of each subquery, taking into account the execution
properties of all its logical predecessors within the execution tree.

1.2.4 Statement Plans

Reports:

- whether the statement is executed
- by DBspace scan
- by index-only scan
- by fully-qualified index scan
- by selective or non-selective index scan
- by view materialization

- the name of the plan index, if any
- the number of matching index-key columns
- the join method if the statement implies joining
- the number of rows in the inner and outer join table
- whether sort operations will be performed

If the statement is executed by DBspace scan, the Plan paragraph will compute the DBspace
scan productivity as the estimated percentage of table data accessed during the relational scan.
If indexed access is used, the column definitions of the index and its characteristics (first or not,
clustered or not, unique or not) are shown.

1.2.5 Statement Reference

Reports:

- the column names appearing in the WHERE or UPDATE SET clauses
- the selectivity (filter factor) of those columns
- the columns appearing in a sargable predicate
- the columns used during a join
- the columns used for ORDER or GROUP BY
- the columns updated by the statement

The Reference paragraph shows the explain column numbers as names. If a view is being
explained, the base table name and column names from explain are related to the corresponding
viewname and view column names, as used in the application.

Page 4 SQL Command Analysis

 If the original statement is a SELECT *, the * is not expanded, due to the maximal statement length1

restrictions.

1.2.6 Explain Warnings

In addition, an SQL statement will be flagged with the warning character > and a warning
message code:

- if it is executed by DBspace scan
- if it is executed by a non-selective index scan
- if data pages must be accessed to resolve the predicate conditions
- if no indexes exist for the table
- if no highly clustered indexes or unique indexes exist for the table
- if view materialization occurs
- if all rows of the table are being accessed
- if a subquery is executed at each invocation of its parent block
- if the outer join table is larger than the inner join table

A severity code 1, 2 or 3 is associated with each of the warnings and printed as 1, 2 or 3 > signs.
The highest severity code 3 is assigned to conditions that are assumed to increase database I/O
during statement execution.

Note

If the statement contains view references, SQL EXPLAIN operates using the underlying real tables.
Therefore, SQL/CA expands such statements by inserting the view definition(s) until the resulting
statement contains real table references only. The original and the expanded statements are printed and
the expanded statement is used for SQL/CA text analysis.1

SQL Command Analysis Page 5

1.3 Text analysis
SQL/CA text analysis examines the application program for adherence to the SQL coding and
performance rules described in the IBM "performance tuning" manual and detects statement
specifications that lead to suboptimal performance. Text analysis will specifically warn the following
performance exposures:

- Indexing columns are being updated by the statement.

- Table indexes do exist, but the statement predicate does not contain index column references.

- Table indexes do exist, but the statement predicate contains incomplete index column
references, that is, one or more indexing columns are not specified for the plan index (the index
that is effectively used during execution).

- The predicate uses indexing columns in expressions such as "BALANCE*2 > 1000". This may
disqualify index use.

- The datatype compatibility rules are violated in a combination of two syntactical elements. For
example: the datatype of a host variable is not compatible with the datatype of the corresponding
table column. See “Datatype evaluation table” on page 85. Moreover, when the column is
DECIMAL and the host variable DECIMAL, INTEGER or SMALLINT, the scale compatibility rules
must be observed, as described on page 85.

- The data length compatibility rules are being violated for non-decimal columns. The lengths of
the syntactical elements A and B are considered compatible when length(A) >= length(B), except
for VARCHAR columns with length < 254 and VARGRAPHIC columns with length < 127, which
are compatible with all character values, fixed or variable of any length.

- The data precision compatibility rules are being violated for decimal columns. The precisions of
the decimal elements A and B are considered compatible when precision(A) >= precision(B).

- The data scale compatibility rules are being violated for decimal columns. The scales of the
decimal elements A and B are considered compatible when scale(A) = scale(B) when B is not
a constant. When B is a constant the compatibility rule is scale(A) >= scale(B).

- SQL predicate operators used in the statement are no index keymatching candidates, that
means, the key values cannot be used to directly fetch an index entry. For instance: an =
operator is key-matching, a ^= operator is not. For a complete list of index keymatching
operators, see the table on page 86.

- The statement predicate specifications are not "sargable", that is, they cause the predicate to be
evaluated by RDS (the DB2 Relational Data System) and not by DBSS (the DB2 Database
Subsystem). This involves additional CPU time consumption. A number of statement operators
is not sargable. For a list of them, see the table on page 86.

- The predicate is not sargable because an indicator variable is used with a host variable in an
EQUALS predicate for a column that does not permit nulls.

Page 6 SQL Command Analysis

- The left and right hand expressions of the predicate refer to columns of the same table
(T1.COL1=T1.COL2). Such predicates are not sargable and not keymatching.

- The statement contains suboptimal SQL verbs such as "OR" or "NOT".

- The entire statement predicate has become non-sargable, due to a non-sargable predicate
connected by OR.

- The default filter factor is used for range operators (such as > , LIKE or BETWEEN) because the
predicate contains host variables. Due to the default selectivity rules applied by the DB2
optimizer, such specifications may lead to index disqualification. The default filter factor used for
the predicate is shown: it depends on both the range operator type and the number of distinct
column values. For more information, see the table on page 87.

- Range predicates such as >, >=, <, <= are used. These are less selective than BETWEEN.

- A predicates uses indicator variables. Such predicates are neither key-matching or sargable.

- A join predicate violates the datatype and data length rules. Contrarily to normal predicates
(which must be compatible), join predicates require that the datatypes, lengths, precisions and
scales of the join columns be identical.

- A join statement omits necessary search conditions. If, in addition to the join predicate, the
statement states more "local" predicates, the latter should normally be stated for both join
columns. The DB2 optimizer will automatically add a missing "local" condition, but this will be
done only for an equijoin and when the local condition is sargable.

Many of the above conditions disqualify selective index use, that is, DB2 may decide to read the
entire table, using either an index scan or a DBspace scan (in the latter case, all tables in the
DBspace are scanned). For each of the above conditions, a specific warning message is inserted in
the report.

These warning message can be searched by code in the SQL/CA Glossary, while examining the
analysis report on the screen. The Glossary describes the detected performance exposure in full
detail and suggests corrective action. It contains a number of tables that illustrate the rules followed
by DB2 in evaluating the statement predicate. The Glossary can be found on page 43 of this
publication.

A severity code is associated with each warning issued, to indicate its importance. For warnings
involving predicate columns, a distinction is made between indexing and non-indexing columns.
Since a performance exposure concerning an indexing column will have a more considerable
performance impact, a severity 3 code is signalled. For a non-indexing column, a severity code 1 is
associated with the warning.

SQL Command Analysis Page 7

 If a table has N rows and all N values of the column are arranged in ascending order, the value shown2

is at position 0.1*N (for the 10th percentile), 0.5*N (for the 50th percentile) or 0.9*N (for the 90th
percentile).

1.4 Object lists
Following the analysis report, lists are produced to describe the physical characteristics of the tables,
table columns and indexes used by the program. These characteristics and statistical data are taken
from the DB2 catalogs. If no statistics are available for a table (no UPDATE STATISTICS statement
executed), the corresponding statistic values are unknown and displayed as ? (a question mark).

The table section shows for each table accessed by the application:

- the name of the table's DBspace
- the average rowlength
- the number of table rows
- the effective number of rows per DBspace page, taking into account the effective freespace

class
- the number of table pages
- the percentage of DBspace pages occupied by the table
- the number of dependent and parent tables in a referential integrity environment

The index section shows for all indexes defined on all tables in the table section:

- the "clustered" attribute
- the clustering ratio
- the "first" attribute
- the "unique" attribute
- the first key count
- the full key count
- the number of leaf pages in the index
- the number of levels in the index

The index column section shows for all columns of all indexes appearing in the index section:

- the percentage of distinct column values
- the first eight bytes of the second lowest value in the column.
- the first eight bytes of the second highest value in the column.
- the value of the column at the 10th percentile 2

- the value of the column at the 50th percentile
- the value of the column at the 90th percentile
- the most frequent column value and its percent frequency
- the second most frequent column value and its percent frequency

Page 8 SQL Command Analysis

1.5 Object notes
SQL/CA analyses each DBspace, table or index used by the application and (if applicable) issues
following notes at the end of the analysis report:

- the freespace in a DBspace may not be used during insert activity
- a small DBspace does not have the "row" locklevel
- the DBspace is located in the same storage pool as the DB2 catalogs
- a table has more than 10% overflow rows
- a small table has indexes other than those required for referential integrity or primary keys (small

tables are best processed by DBspace scan)
- VARCHAR or VARGRAPHIC columns are part of an index definition: such indexes will never be

used for an index-only scan
- the first column of a composite index is not the most selective one

1.6 Analysis summary
At the end of the report, a summary is printed that shows the highest SQL cost value encountered
in the program, the number of DBspace and index scans and the number of SQL/CA warnings, by
warning severity.

SQL Command Analysis Page 9

1.7 Operation

1.7.1 User interface

SQL/CA analysis requests are usually issued from the CICS transaction $CAM. However, the
analysis request can also be issued from a batch partition (e.g. a compile procedure), as
described on page 25 Analysis itself is performed in a batch partition by the SQL/CA Analysis
Server. The analysis reports must be examined online, using the$CAM transaction. After
submitting an analysis request, the user has the option of waiting interactively on the analysis
report.

1.7.2 SQL/CA help

Online help is provided at all levels of the SQL/CA user interface. The product provides an
online Glossary that explains the messages issued during analysis and defines most of the DB2
technical terminology and the SQL/CA specific terms. This glossary can be displayed by function
key while the analysis report is being examined.

1.7.3 Explain tables

The SQL/CA explain DBspace and tables are created during product installation under the
ownership of “SQLCA” which is the userid under which the SQL/CA server connects to DB2.
Before starting an analysis, the server deletes all rows in the explain tables. No indexes are
provided on the explain tables.

1.7.4 DB2 Connections

Analysis is always executed under the DB2 userid of the SQL/CA server “SQLCA”, which should
have DBA authority. When submitting an analyis request, the user must specify the name of the
DB2/VSE database where analysis should be performed. If the statements to be analyzed
contain unqualified table names, a default creator name can be supplied in the user interface.
SQL/CA will automatically use this default creator with unqualified table names.

1.8 SQL/CA - SQL/MF integration
If our SQL/MF monitor program product has been installed, real-time execution statistics will be
included for each analyzed application. This allows to compare the execution cost estimated by DB2,
with the effective execution cost. To achieve this, the SQL/CA server should have access (as DBA)
to the SQL/MF tables.

Page 10 SQL Command Analysis

1.9 DB2 data modelling facility
It is desirable that development databases resemble the production databases as much as possible.
This ensures that access paths chosen by DB2 for the test programs are identical to those in the
production system. However, completely replicating the operational data in the test database usually
is not practical or feasible. In fact, it is not necessary : DB2/VSE allows database administrators to
modify certain columns in the catalog tables, in order to create a model of a production database on
a test system. SQL statements in the test system are then executed using the access path that would
have been chosen in the production system. Manually modelling the catalogs is time-consuming and
requires knowledge about DB2 internals. Therefore, SQL/CA offers the utility program SQLCADMF
that can be used to quickly copy the catalog statistics from one system to another.

SQL Command Analysis Page 11

2 SQL/CA Installation

2.1 Software Prerequisites
- VSE/ESA Version 2 Release 2 and later
- DB2/VSE Version 3.5 and later

2.2 Pre-installation tasks

2.2.1 Prepare a VSE library

If you did install another SPR product previously, SQL/CA should be stored in the same library
as the other SPR product and you can skip the remainder of this paragraph.

Otherwise, define the VSE library where SQL/CA will be catalogued, by submitting the following
jobstream:

// EXEC LIBR
 DEFINE SUBLIB=xxxxx.xxxx
/*

Notes

- The SQL/CA material requires about 5000 library blocks.
- If you have other SPR products installed, install SQL/CA in that library. All SPR products

must reside in the same library and sublibrary.

2.2.2 Update LIBDEF and Standard Labels

- Add the SQL/CA library to the PHASE and OBJ SEARCH LIBDEF in your LIBDEF.PROC.
- Submit the updated LIBDEFs to the system before continuing installation. The installation

procedures expect that the SQL/CA library is in the current chain.
- Ensure that the standard labels have a DLBL for the DB2 files SQLBIND, SQLGLOB and

BINDWKF, as suggested by the DB2 installation guide. Submit the updated label definitions
before continuing installation.

2.2.3 Prepare the SQL/CA Report Library

The SQL/CA analysis reports are stored in a VSAM cluster. These reports are managed by the
SQL/CA users from the online SQL/CA application. Analysis reports are never deleted by
SQL/CA. This is a user responsability. An installation may decide to keep the analysis reports
in the library, as part of the application’s documentation.

The space needed for the VSAM cluster depends on the number of active reports, the number
of SQL statements in the applications and the number of SQL/CA warnings issued. SQL/CA
compresses the text of the report by dropping leading, trailing and interspersed blanks. The
SQL/CA library blocks are 16K long and in the average, a block will hold 3 to 4 analyzed SQL
statements.

Page 12 SQL Command Analysis

2.3 Installing SQL/CA
The SQL/CA software is delivered as a PC file in ZIP format.

Place the ZIP file in a dedicated directory (e.g. SQLCA) and unzip the file. Following files should now
be present in the SQLCA directory:

INSTALL.BAT installation procedure for Windows

SEND2RDR.BAT installation procedure for Windows

SQLCA.PCF SQL/CA software

SQLCASCF.PCF software key

SQLCA.OPTIONS upload the OPTIONS file

SQLCAI0.VSEJOB setparm SPRLIB

SQLCAI1.VSEJOB linkedit SQL/CA

SQLCAI2.VSEJOB define the SQL/CA report library

SQLCAI3.VSEJOB define the SQL/CA components to CICS

SQLCAI4.VSEJOB install SQL/CA in a database

SQLCASRV.VSEJOB job to start the SQL/CA server

SQLCA.BKS bookshelf for IBM Library Reader

SQLCA.BOO SQL/CA User’s Guide in IBM Library Reader
format

2.3.1 Preliminary Note

The INSTALL.BAT and SEND2RDR.BAT installation procedures use the “SEND.EXE” to upload the
PC files to the POWER reader queue. Ensure that your 3270 emulator supports SEND (some
emulators don’t) and that the EXE is on your active path.

If you cannot use the SEND.EXE, use the upload facilities of your emulator to perform the equivalent
of the SEND commands contained in the BAT files, that is:

for the INSTALL.BAT:

SEND SQLCASCF.PCF (FILE=RDR BINARY LRECL=80 NOUC
SEND SQLCA.PCF (FILE=RDR BINARY LRECL=80 NOUC

for the SEND2RDR.BAT:

SEND <filename> (FILE=RDR

SQL Command Analysis Page 13

2.3.2 Issue SETPARM for SPRLIB

Skip this step when running a VSE/ESA version lower than 2.4. The job submits a SETPARM
SYSTEM statement that is not accepted in older VSE versions.

- Start ICCF PC file transfer (fast path 386) in 3270 emulator session A.
- Edit the file SQLCAI0.VSEJOB and insert the name of the target library on the SETPARM

SPRLIB statement. The SETPARM statement remains active until the next VSE IPL. If you
installed another SPR product previously into the SPRLIB, insert the name of that library on
the SETPARM statement.

- Drag and drop the file SQLCAI0.VSEJOB on the SEND2RDR.BAT. This will send and start
the job in class 0 and DISP D. The output listing is in DISP H.

- Check the output listing for errors.

2.3.3 Upload the SQL/CA software

- Start ICCF PC file transfer (fast path 386) in 3270 emulator session A.
- Execute the INSTALL.BAT by clicking. This will upload 2 jobs to the POWER/VSE reader

queue with DISP D and class 0. The jobs catalog all SQL/CA components into the VSE
library chosen as SQL/CA residence.

- Both jobs contain a // PAUSE statement. This allows to enter a // SETPARM SPRLIB=’...’.
If running VSE/ESA 2.4 or higher, ignore the PAUSE statement, as the SETPARM has been
submitted by the SQLCAI0.VSEJOB, described above. If running a version older than 2.4,
issue the SETPARM statement.

- After job completion, check the DISP=H listing for any errors.

2.3.4 Link SQL/CA

- Start ICCF PC file transfer (fast path 386) in 3270 emulator session A.
- In the file SQLCAI1.VSEJOB, assign the SETPARM symbol SPRLIB, specifying the library

where SQL/CA has been uploaded. This is required for VSE versions lower than 2.4. If
running 2.4 or higher, you can delete the SETPARM statement, as it has been submitted by
the SQLCAI0.VSEJOB, described above.

- Drag and drop the file SQLCAI1.VSEJOB on the SEND2RDR.BAT. This will send and start
the job in class 0 and DISP D. The output listing is in DISP H.

- Check the output listing for errors.

2.3.5 Upload the SQLCA OPTIONS file

- Start ICCF PC file transfer (fast path 386) in 3270 emulator session A.
- Edit the file SQLCA.OPTIONS. If needed, change the POWERCLASS statement, which

indicates the class where analysis jobs should run.
- Drag and drop the file SQLCA.OPTIONS on the SEND2RDR.BAT. This will send and start

the job in class 0 and DISP D. The output listing is in DISP H.
- Check the output listing for errors.

Page 14 SQL Command Analysis

2.3.6 Define the SQL/CA Report Library

- Start ICCF PC file transfer (fast path 386) in 3270 emulator session A.
- Edit the file SQLCAI2.VSEJOB and assign the following SETPARM symbols to define the

cluster SQLCA.REPORT.LIBRARY:
- CAT the name of the VSAM catalog for the cluster
- VOLUME the VOLUME parameter
- PALLOC the primary space allocation value as a number of records (16K long)
- SALLOC the secondary space allocation value as a number of records (16K

long)
- Drag and drop the file SQLCAI2.VSEJOB on the SEND2RDR.BAT. This will send and start

the job in class 0 and DISP D. The output listing is in DISP H.
- Check the output listing for errors.

2.3.7 Define the SQL/CA components to CICS

- The SQLCAI3.VSEJOB assumes that the CICS.CSD cluster is in the VSESPUC user
catalog. If this not not the case, re-assign the CAT symbol in the SQLCAI3.VSEJOB file.

- Start ICCF PC file transfer (fast path 386) in 3270 emulator session A.
- Drag and drop the file SQLCAI3.VSEJOB on the SEND2RDR.BAT. This will send and start

the job in class 0 and DISP D. The output listing is in DISP H.
- The job starts a DFHCSDUP run that defines the interactive SQL/CA components to CICS,

using the group SQLCA.
- Check the output listing for errors.

2.3.8 Update the CICS FCT

- The CICS FCT must have an entry for the SQLCA.REPORT.LIBRARY.
- Copy the member SQLCAFCT.A in your DFHFCT and re-assemble it.

SQL Command Analysis Page 15

2.3.9 Install SQL/CA in a database

This installation step should be executed in all databases where SQL/CA will be used. Following
functions will be performed in the target database:

- Define the userid SQLCA
- Load the SQL/CA packages
- Create the SQL/CA Explain tables

Edit the PC file SQLCAI4.VSEJOB and assign the following SETPARM symbols

CAT
the VSAM catalog for a SAM ESDS workfile (default is VSESPUC)

DB
The name of the target database.

DBAPASS
The password of user SQLDBA in that database.

CAPASS
The password to be assigned to user SQLCA in that database. The SQLCA userid is granted
DBA authority by SQLCAI4. The CAPASS value is stored (in encrypted format) into a
member of the SPRLIB, for retrieval by the SQL/CA components. The CAPASS value should
be the same in all databases where SQL/CA is installed.

POOL
The storage pool number for the SQL/CA explain DBspace.

PAGES
The number of pages for the SQL/CA explain tables (minimal size of 128 pages is sufficient).

Submit the SQLCAI4.VSEJOB as follows:

- Start ICCF PC file transfer (fast path 386) in 3270 emulator session A.
- Drag and drop the file SQLCAI4.VSEJOB on the SEND2RDR.BAT. This will send and start

the job in class 0 and DISP D. The output listing is in DISP H.
- Check the output listing for errors.

2.3.10 Update the VSE startup stream

If you installed the SPR product SQL/MF previously, skip this section.

If you are running VSE/ESA 2.4 or higher, insert a
// SETPARM SYSTEM,SPRLIB=’library_name’
in the $0JCL or USERBG procedure, where ‘library_name’ is the library where SQL/CA has been
catalogued. The SPRLIB variable is needed by several SQL/CA components during execution.
VSE versions lower than 2.4 do not provide the SETPARM SYSTEM statement and the SPR
library name will be obtained using a component provided by SQL/CA. The SETPARM SYSTEM
statement will ensure better performance, as it allows to determine the library name without
accessing the library.

Page 16 SQL Command Analysis

2.3.11 Update the VSE standard labels

In your standard labels procedure, insert the following DLBL for the SQL/CA report library:

// DLBL SQLCLIB,’SQLCA.REPORT.LIBRARY’,,VSAM,CAT=....,DISP=(OLD,KEEP)

2.3.12 Upload the SQLCASRV startup sample job

- The SQLCASRV VSEJOB starts the SQL/CA server partition.
- Examine the SQLCASRV.VSEJOB and modify the CLASS operand, if needed.
- Start ICCF PC file transfer (fast path 386) in 3270 emulator session A.
- Drag and drop the file SQLCASRV.VSEJOB on the SEND2RDR.BAT. This will store the job

in the POWER reader queue, with DISP L.

SQL Command Analysis Page 17

3 Using SQL/CA

3.1 Using the SQL/CA interactive menu

In a CICS session, enter $CAM. This will display the main SQL/CA menu.

Enter one of the following function codes or select the function by positioning the cursor on the
function description:

1 Invoke the SQL/CA Librarian (see page 20)
2 Analyze a source program residing in a VSE library (see page 17)
3 Analyze a source program residing in an ICCF library (see page 17)
4 Analyze a source program residing in a VOLLIE library (see page 18)
5 Analyze a DB2/VSE package (see page 18)
6 Analyze a QMF query (see page 18)
7 Analyze an ISQL query (see page 18)
8 Analyze a query entered on the terminal (see page 19)

3.2 Analyze a VSE library member
Supply following panel fields:

- the name of the VSE library
- the name of the VSE sublibrary
- the name of the VSE library member
- the type of the VSE library
- the name of the database where analysis must be performed
- optionally, the table creator to be used for unqualified table name references

Your input is saved in global variables and restored as default on the next invocation of this function.

3.3 Analyze an ICCF library member
Supply following panel fields:

- your ICCF userid
- the ICCF library number
- the name of the ICCF library member
- the name of the database where analysis must be performed
- optionally, the table creator to be used for unqualified table name references

Your input is saved in global variables and restored as default on the next invocation of this function.

Page 18 SQL Command Analysis

3.4 Analyze a VOLLIE library member
Supply following panel fields:

- the name of the VOLLIE library member
- the type of the VOLLIE library member
- the name of the database where analysis must be performed
- optionally, the table creator to be used for unqualified table name references

Your input is saved in global variables and restored as default on the next invocation of this function.

3.5 Analyze a DB2 package
Supply following panel fields:

- the creator of the package
- the name of the package
- the name of the database where analysis must be performed
- optionally, the table creator to be used for unqualified table name references

Your input is saved in global variables and restored as default on the next invocation of this function.

3.6 Analyze a QMF query
Supply following panel fields:

- the creator of the query
- the name of the query
- the name of the database where analysis must be performed
- optionally, the table creator to be used for unqualified table name references

Your input is saved in global variables and restored as default on the next invocation of this function.

3.7 Analyze an ISQL query
Supply following panel fields:

- the creator of the ISQL ROUTINE table containing the query
- the name of the query
- the name of the database where analysis must be performed
- optionally, the table creator to be used for unqualified table name references

Your input is saved in global variables and restored as default on the next invocation of this function.

SQL Command Analysis Page 19

3.8 Analyze an interactive query
Supply following panel fields:

- the name of the database where analysis must be performed
- optionally, the table creator to be used for unqualified table name references
- the text of the SQL statement to be analyzed, with a maximum length of 10 terminal lines)

Page 20 SQL Command Analysis

3.9 SQL/CA Librarian

3.9.1 Searching the SQL/CA Report Library

SQL/CA analysis reports are identified in the library by:

- the CICS userid that requested analysis
- a reportname
- a report timestamp (to allow multiple analysis reports for the same source)

The report name is the name of the analysis source, that is

- the VSE membername and the membertype
- the ICCF membername and library number
- the package creator and package name
- the query creator and query name
- the string “Interact Query” for interactive statement analysis

To search your reports in the library, enter following panel fields

- your userid (or leave the default CICS id)
- the 2-part reportname

Generic search arguments can be indicated by a trailing asterisk sign. The argument may consist
of a single asterisk.

Examples

- to list all your reports, enter your userid and 2 asterisks for the reportname
- to list the analysis reports for all DB2 packagenames starting with ‘AB’, enter your userid, an

asterisk for the creator and AB* as the packagename

SQL Command Analysis Page 21

3.9.2 Processing the Report selection list

Process the list of the selected analyis reports by using following PF key functions:

PF1
Display the SQL/CA help file.

PF2
Refresh the list from the report library.

PF3
Exit from this panel.

PF6
Display first page of the list.

PF7
Display previous page of the list.

PF8
Display next page of the list.

PF9
Display last page of the list.

PF10
Display the report under the cursor by invoking the SQL/CA report editor.

PF11
Print the report under the cursor. The function is not executed online but the request is
transmitted to the batch SQL/CA analysis server. The report is printed to the POWER/VSE queue
with an LDEST that specifies your CICS userid.

PF12
Delete the report under the cursor. The function is not executed online but the request is
transmitted to the batch SQL/CA analysis server.

ENTER
Makes the report under the cursor “current” (and highlights the line).

Page 22 SQL Command Analysis

3.9.3 Processing the analysis report

After invoking the report editor (PF10 on the previous screen), the report is read from the library
into a storage list and the first page of the report is shown.

Process the analyis report by using following PF key functions:

PF1
Display the SQL/CA help file.

PF2
Searches a text string in the report.
On the search panel, specify the string to be located and the search direction as > (forward) or
< (backward).
Searching is case insensitive and proceeds from the current line + 1. The first line located
becomes the current line.

PF3
Terminate the report editor.

PF4
Display the SQL/CA glossary.
The glossary contains
- a detailed description of the warning messages issued during analyis
- suggestions for corrective action
- a description of the DB2 and SQL/CA terminology
- tables that describe some rules applied by the DB2 Optimizer

If the cursor is on an SQL/CA warning (“AWxx”) when pressing PF4, the Glossary is positioned
to the description of that warning.

PF5
Locates the next SQL/CA warning message.

PF6
Display first page of the list.

PF7
Display previous page of the list.

PF8
Display next page of the list.

PF9
Display last page of the list.

PF10
Displays the previous SQL statement in the report.

SQL Command Analysis Page 23

PF11
Displays the next SQL statement in the report.

PF12
Displays all warning issued for the current SQL statement on a single screen.
The SQL/CA Glossary can be called for each warning in this list, using PF4.

ENTER
Places the report line under the cursor on top of the screen and highlights the line.

Page 24 SQL Command Analysis

3.9.4 Displaying the SQL/CA Glossary

Browse the Glossary by using following PF key functions:

PF2
Searches a text string in the glossary.
On the search panel, specify the string to be located and the search direction as > (forward) or
< (backward).
Searching is case insensitive and proceeds from the current line + 1. The first line located
becomes the current line.

PF3
Terminate the report editor.

PF6
Display first page of the list.

PF7
Display previous page of the list.

PF8
Display next page of the list.

PF9
Display last page of the list.

ENTER
Places the line under the cursor on top of the screen and highlights it.

SQL Command Analysis Page 25

3.10 Invoking SQL/CA from a batch job
SQL/CA analysis can be requested from batch, by submitting following JCL:

// JOB
// LIBDEF PROC,SEARCH=&SPRLIB
// EXEC SQLCA,SIZE=SQLCA

(1) control_statement_1
(2) control_statement_2
(3) control_statement_3
(4) source text to be analyzed

/*
/&

Notes

(1) The first control statement specifies the name of the database where analysis should be
performed. An optional default creator can be specified as the second word on this
statement, if the SQL statements to be analyzed use unqualified tablenames.

(2) Specify an 8-character userid under which the analysis report should be stored in the
SQL/CA report library. No checking is done on the validity of this userid and it is used solely
as part of the report key. This userid should be used to search the report library after
analysis.

(3) Identifies the source for analysis. The first word on the record is the sourcetype. The
following words depend on the sourcetype used, as follows

Source word 2 word 3 word 4 word 5
type

VSE library sublibrary member member
name name name type

ICCF library member
number name

PACKAGE creator packagename

QMF creator queryname

ISQL creator queryname

*

(4) If the source is in a library, use the * $$ SLI statement to insert it here. With sourcetype *,
insert the text of the SQL statement. No data is expected when analyzing a package, a QMF
query or an ISQL routine.

(5) By default, the report resulting from the batch analysis is stored in the SQL/CA Report
Library. The report should be consulted using the $CAM CICS transaction.
However, if the PARM=’PRINT’ option is included on the // EXEC SQLCA statement, the
analysis report will be printed to the POWER list queue only.
The PARM=’PRINTKEEP’ option will print the report to the POWER queue and store the
report in the Report Library.

Page 26 SQL Command Analysis

Example

// JOB SQLCA
// LIBDEF PROC,SEARCH=<SPRLIB>
// EXEC SQLCA,SIZE=SQLCA
SPRDB2
USER1
PACKAGE SQLDBA DRD10
/*
/&

SQL Command Analysis Page 27

4 The SQL/CA Server

4.1 Starting the SQL/CA server
The server is started with a PRELEASE RDR,SQLCASRV. This command should be in the system
startup stream.

The online SQL/CA interface sends analysis requests to the server using XPCC messages to

- perform analysis
- print a named analysis report
- delete a named analysis report

On reception of an analysis request, SQLCASRV builds an SQL/CA jobstream and transmits it to
POWER/VSE with the class specified as POWERCLASS in the SQLCA OPTIONS file. If no
POWERCLASS statement is found, class Z is used. After the job has been sent, analysis is
performed asynchronously and the server is free to accept a new request.

The analysis program itself (SQLCA) serializes the analysis facility, using a VSE lock request. This
is necessary because SQLCA has only one set of explain tables. This method of operation will also
reduce system load resulting from explain and predicate analysis.

4.2 Stopping the SQL/CA server

The stop the analysis server, issue a VSE MSG to the partition. No MSG data is expected.

Page 28 SQL Command Analysis

SQL Command Analysis Page 29

5 Interpreting the analysis report
For each SQL statement in the application program, following paragraphs are printed in the analysis
report.

5.1 Statement Execution Structure by block and parent
SQL/CA formats the SQL statement in such a way, that the execution structure for a multiple query
statement becomes apparent. Each subquery is indented according to its nesting level within the
execution tree. The outer (first) query is printed at indent level 1; a subquery called from the outer
query is printed at indent level 2; a subquery called by another subquery is printed at the indent level
following that of its parent query. For each subquery, the query blocnumber (BLK) and the number
of the invoking parent block (Par) is provided.

Note that the execution hierarchy is derived by SQL/CA from the explain tables and that in some
cases the actual execution structure may differ from the source statement structure. The DB2
optimizer may effectively execute some subqueries earlier, at the opening of an ancestor block, when
there is no correlation to the tables in the intermediate query block.

5.2 Structure of Referential Constraint Statements

A statement modifying a table that is a member of a referential integrity constraint, generates
additional statements that enforce the integrity. A delete on a parent table for instance, will generate
delete or update statements for all its dependent tables. The execution structure of these internal
statements is provided by SQL/CA in separate paragraphs that are titled Structure of referential
constraint statement, followed by the internal statement number (1 to N). The text of the internal
statement is derived from the EXPLAIN data.

Page 30 SQL Command Analysis

 See SQL/MF Integration on page 9.3

5.3 Statement Cost Summary
The cost paragraph applies to the statement as a whole. For a single query statement, 2 cost
estimates are provided:

- Total Statement Cost The query cost estimate from the explain table. The value is zero for
INSERT statements.

- ISQL like Cost (total_statement_cost / 1000) + 1. Interactive SQL systems such as
ISQL present the Query Cost Estimate in this format.

For a multiple query statement, following values are computed:

- Single_Cost The cost of a single execution of the query block, not including the cost
of the dependent and the ancestor blocks.

- Exec_Times The estimated number of invocations of a query from all its parent
blocks. Eventual multiple parents as well as their "ATOPEN" attribute
are taken into account. (The ATOPEN flag tells whether the subquery
is executed once or multiple times by its immediate parent block).

- Multi_Cost Single_Cost multiplied by Exec_Times.

- SQL_Cost The cost from the DB2 explain table i.e. the cost of the query plus the
cost of all its dependent blocks.

- Highest_Subquery_Cost The highest Multi_Cost found for a subquery in the statement.
Performance tuning should concentrate on this subquery.

If our SQL/MF monitor program product has been installed and if the monitor tables are accessible during
analysis , following execution-time program statistics are included:3

N_Rows number of rows processed
DBSScall number of calls to the DBSS component
Buflook number of buffer lookups performed
Tot_IO number of I/O's or dataspace transfers performed
SQL_Cost effective statement cost as TOT_IO + (DBSSCALL/3)

These statistics were recorded during the last execution of the application. They can be used to compare
the cost estimated by DB2/VSE with the real execution cost.

SQL Command Analysis Page 31

5.4 Statement Plan Summary

If the analyzed statement has more than one row in the plan table, the plan summary is printed.

For each entry in the plan table, following data is provided:

- the query number starting from 1 up to the number of nested queries in the statement
- the plan number within the query (1 to N)
- the access descriptor for the plan entry

For primary plan entries, one of the following access descriptors is provided:

- scan of DBspace N for table N
- selective index[-only] scan of table N
- non-selective index[-only] scan of table N
- fully qualified index[-only] scan of table N
- literal based index[-only] scan of table N

For secondary plan entries, one of the following access descriptors is provided:

- nested loop join
- merge scan join
- sort at end of query

For join plans, the access path taken during join is also shown, using one of the primary plan
descriptors. For example: "Nested loop join using selective index scan of table N".

Each plan is described in full detail in the Statement execution detail paragraph.

Page 32 SQL Command Analysis

5.5 Statement Execution Structure
The paragraph is printed for each subquery in the SQL statement and provides following data
obtained from the DB2 explain tables:

Estimated number of rows processed ... out of ...

The ROWCOUNT column from the EXPLAIN table. It indicates the estimated number of rows
returned for the table(s) used in this statement. SQL/CA computes the total number of table rows
from which the estimated number of rows is selected and prints this number following out of. For
join statements, this total counts the rows for all tables participating in the join.

Estimated global statement filter factor

Represents the fraction of table rows estimated to satisfy the statement predicate as

(estimated number of satisfying rows) / (sum of all rows of all tables accessed)

The filter value ranges from 0 to 1. The lower the value, the better the selectivity of the statement.

Estimated times predicate conditions satisfied

The TIMES column from the EXPLAIN table. It estimates the probability that the predicate
conditions of the statement will be true. It also shows how many times eventual dependent blocks
will be executed. If the estimated value equals the number of table rows, SQL/CA assumes a
sequential table scan and issues a warning.

Estimated execution iteration by ancestor blocks

Using the TIMES column from the EXPLAIN Structure table for all parent blocks, SQL/CA
computes the total number of times this query block will actually be executed. The ATOPEN
attribute of each ancestor block is also taken into account. (The ATOPEN flag tells whether the
subquery is executed once or multiple times by its immediate parent block).

Block executed ... times by parent block ..

The TIMES column from the EXPLAIN Structure table. It estimates the number of times the
subquery is invoked by its immediate parent, which is represented by its blocknumber.

SQL Command Analysis Page 33

5.6 Statement Execution Detail
The following information is printed for each plan in the query. JOIN queries or statements requesting
a sort operation, will have more than one plan.

5.6.1 Plan Detail

The execution plan is detailled by providing the following items:

METHOD

The information is available for JOIN and sort plans only. It takes following values:

Merge scan JOIN

DB2 merges the response set obtained thus far with the new table to be joined in the
order of the join column and joins rows with matching columns. A sort operation may
be necessary to access the table to be merged in the required order. A merge scan
join may require work dataspace.

Nested loop JOIN

For each row of the response set obtained thus far, the new table to be joined is
searched for matching rows and the matching rows are joined. An index may be
used to access the new table.

Additional sort at end of query block

The plan executes a final sort operation in order to satisfy ORDER, GROUP or
DISTINCT statement clauses.

Page 34 SQL Command Analysis

ACCESS

Using scan of DBspace

Rows are accessed by scanning the named DBspace. Data belonging to other
tables in the same DBspace will also be scanned. SQL/CA adds the following
informations:

DBspace pages scanned

Provides the number of active pages in the scanned DBspace, that is the
number of pages that actually will be read.

DBspace scan productivity

If multiple tables share the scanned DBspace, the productivity value shows the
percentage of DBspace data scanned belonging to the table accessed in the
plan. For critical tables productivity should normally be 100%, that is, the table
should have its dedicated DBspace. Otherwise, a DBspace scan will imply
unnecessary I/O by reading pages of other tables and unproductive locks on
pages that contain rows belonging to other tables.

Fully-qualified index scan

The table will be accessed using all columns of the named unique index. The name
of the index and its columns are printed. The characteristics of the index are
specified as first or non-first, highly clustered or weakly clustered, unique or
not unique.

Fully-qualified index-only scan

The table will be accessed using all columns the named unique index. Moreover, all
selected data will be retrieved using the index, that is, data pages will not be
accessed. The name of the index and its columns are printed. The characteristics
of the index are specified as first or non-first, highly clustered or weakly
clustered, unique or not unique.

Fully-qualified index scan

The table will be accessed using all columns of the named unique index. The name
of the index and its columns are printed. The characteristics of the index are
specified as first or non-first, highly clustered or weakly clustered, unique or
not unique.

SQL Command Analysis Page 35

Literal based index scan

The table will be accessed using the named index and literal values from an IN list.
The name of the index and its columns are printed. The characteristics of the index
are specified as first or non-first, highly clustered or weakly clustered, unique
or not unique.

Literal based index-only scan

The table will be accessed using the named index and with values from an IN list.
Moreover, all selected data will be retrieved using the index, that is, data pages will
not be accessed. The name of the index and its columns are printed. The
characteristics of the index are specified as first or non-first, highly clustered or
weakly clustered, unique or not unique.

Non-selective index only scan

The table will be accessed using the named index without key values, which means
that a sequential index scan will be performed. However, all selected data will be
retrieved using the index, that is, data pages will not be accessed. The name of the
index and its columns are printed. The characteristics of the index are specified as
first or non-first, highly clustered or weakly clustered, unique or not unique.

Selective index scan

The table will be accessed using the named index with specific key values. The
name of the index and its columns are printed. The characteristics of the index are
specified as first or non-first, highly clustered or weakly clustered, unique or
not unique.

Non-selective index scan

The table will be accessed using the named index without key values, which means
that a sequential index scan will be performed. Data pages may be accessed if the
predicate references columns that are not available in the index. The name of the
index and its columns are printed. The characteristics of the index are specified as
first or non-first, highly clustered or weakly clustered, unique or not unique.

Materialization of view

View materialization is a technique used by DB2 version 3 in order to remove
restrictions on the processing of views. The feature implies storing of intermediate
select results in internal tables. To access these intermediate results, indexed
access is never used by DB2. Hence the possibly negative performance implications
of view materialization.

Page 36 SQL Command Analysis

Score

The access score is a value computed by SQL/CA in order to represent the
efficiency of the DB2 access path chosen. The higher the score, the better the path.
One point is added to the score each time one of the following conditions is true:

- index access is being performed
- fully-qualified index access is being performed
- index-only access is being performed
- selective index access is being performed
- index access is using a highly-clustered index
- index access is using a unique index

The highest score is achieved when all the above conditions are true. The highest
score is 6. The lowest score is 0 and indicates a DBspace scan.

AW91 Data pages accessed for predicate and data

Data pages must be accessed to resolve the predicate and to retrieve data. If the
warning is not provided and the access is index-only, both predicate and data are
resolved using the index only. If the warning is not provided and the access is not
index-only, the predicate is resolved using the index and data pages are accessed
to retrieve data and predicate columns not available in the index.

Key-matching index columns: n out of m

The number of index keys (n) that have key-matching predicates used in an index
scan. The number of columns in the index is provided by m. If n < m, warning AW92
is inserted.

No indexes for table

No indexes have been defined for the named table.

No highly clustered first index for table

Indexes do exist for the table, but none of them is highly clustered.

No unique indexes for table

The table has no unique indexes. This is a warning only, since the structure of the
data may be such that non-unique indexes are acceptable.

No indexes found created using current DB2 release

All indexes for the table were created using a backlevel DB2 release.

SQL Command Analysis Page 37

 See the Glossary on page 43 for a definition of "new table".4

SORT

New table [not] sorted

The new table accessed in this statement plan needs [does not need] to be sorted.4

New table sorted and duplicates removed

The new table accessed in this statement plan needs to be sorted and duplicates
to be removed, for instance, in order to satisfy a DISTINCT request.

New table sorted for JOIN purposes

The new table accessed in this statement plan needs to be sorted as part of a JOIN
plan.

New table sorted due to ORDER BY

The new table accessed in this statement plan needs to be sorted to satisfy the
statement's ORDER BY clause.

New table sorted due to GROUP BY

The new table accessed in this statement plan needs to be sorted to satisfy the
statement's GROUP BY clause.

Composite [not] sorted

When a statement is performed in several steps, the DB2 term "composite" refers
to the response set obtained thus far, as the result of execution in previous steps.
For a join operation it is the "input" table. The composite had [not] to be sorted at the
initiation of the plan, for example, to prepare the composite for a merge scan join.

Composite sorted and duplicates removed

The composite has to be sorted and duplicates removed.

Composite sorted for JOIN purposes

The composite table accessed in this statement plan needs to be sorted as part of
a JOIN plan.

Page 38 SQL Command Analysis

Composite sorted due to ORDER BY

The composite table accessed in this statement plan needs to be sorted to satisfy
the statement's ORDER BY clause.

Composite sorted due to GROUP BY

The composite table accessed in this statement plan needs to be sorted to satisfy
the statement's GROUP BY clause.

Additional information provided for a JOIN

Number of rows in inner table: the number of rows in the table from which rows are
joined in the current plan (the new table). Not available if no statistics exist for the table.

Number of rows in outer table: the number of rows in the table to which the join is
done (the composite table). Not available if no statistics exist for the table.

The above number of rows represents the effective tablesize during the join, that is, local
non-join predicates are applied when computing the value.

SQL Command Analysis Page 39

5.6.2 Column Reference Details

The table and columns intervening in the current statement execution plan are obtained from the
DB2 EXPLAIN Reference table. For each column, following items are reported:

Filtering factor

For each column referenced in the statement predicate, DB2 determines a filter factor, which
represents the fraction of table rows estimated to satisfy the predicate as:

estimated_number_of_rows / number_of_table_rows

The filter is a value between 0.0 and 1.0. The lower the value, the better the column's
selectivity. A filter factor of 1 means the column has no selectivity at all.

The filter factor depends on the distribution of data values for the column. A column having
a high number of unique values within the table, will have a good selectivity, that is, a small
filter factor. If an SQL statement supplies a search value for such a column, the DB2
optimizer then knows that only a few number of rows will meet the condition and that the
response set will be small, which in turn affects the statement execution cost.

Estimated table rows filtered

This value is obtained by multiplying the number of table rows by the above filter factor. It
shows how many table rows are estimated to be filtered through this column.

Sargable predicate associated with column

A sargable predicate is associated with this column. To receive the qualification:

- the column must be in a predicate that is connected by AND to the rest of the WHERE
clause, or be the only WHERE predicate

- the predicate in which the column appears must be in the format: "column operator
expression"

Sargable equi-JOIN predicate associated with column

The column appears in a join predicate using the = operator and the join predicate is
sargable.

Appears in ORDER BY clause on position ..

The column is used on position .. of an ORDER BY clause.

Appears in GROUP BY clause on position ..

The column is used on position .. of a GROUP BY clause.

Page 40 SQL Command Analysis

Updated by literal expression

The column appears in the SET clause of an UPDATE statement that updates the column
with a constant value.

Updated by column or expression

The column appears in the SET clause of an UPDATE statement that updates the column
with a column value or an expression

Resolved using index page

The column occurs in the plan index and is fixed-length. No data page must be accessed
when fetching this column.

Resolved using index and data page

The column occurs in the plan index but is VARCHAR or VARGRAPHIC. A data page must
be accessed when fetching this column.

Resolved using data page

The column is not in the plan index. A data page must be accessed when fetching this
column.

5.7 Predicate Analysis Warnings
Predicate analysis warnings are issued by the Text Analysis component of SQL/CA. They all have
a message number starting with AW followed by a message code. Please refer to page 53 for a
detailled description of the warning messages.

Unless the warning applies to the SQL statement as a whole, the warning will be preceded by the
part of the statement predicate that is causing the warning.

SQL Command Analysis Page 41

6 SQL/CA data modelling facility
The SQLCADMF utility programs copies catalog information for a named DBspace between
databases.

The utility is invoked as follows:

// EXEC SQLCADMF
INSTALL source_database Dbspacename TO target_databasename
/*

Where

Source_database
Designates the database from which catalog modelling is performed.

Dbspace name
Is required and designates the PUBLIC DBspace for which statistical data should be stored in
the extract file; a generic name, containing the % pattern character can be used to obtain data
for several Dbspaces.

Target_database
Designates the database into which catalog modelling is performed.

The utility copies following catalog columns from source to target:

- SYSDBSPACES
- NACTIVE
- NPAGES

- SYSCATALOG
- ROWCOUNT
- AVGROWLEN

- SYSCOLUMNS
- COLCOUNT
- AVGCOLLEN

- SYSCOLSTATS
- FREQ1PCT
- FREQ2PCT

- SYSINDEXES
- FULLKEYCOUNT
- FIRSTKEYCOUNT
- NLEAF
- NLEVELS
- CLUSTER
- CLUSTERRATIO

Page 42 SQL Command Analysis

SQL Command Analysis Page 43

7 SQL/CA Glossary
ACCESS

DB2 has following ways of accessing a table:

1 DBSPACE SCAN (also termed RELATIONAL SCAN)

The entire DBspace containing the table is scanned. This will also read (and lock) pages of other
tables residing in the same DBspace.

In most cases, a DBspace scan is a problem. However, for small tables residing in a dedicated
DBspace, a DBspace scan may be the most appropriate access strategy.

2 SELECTIVE INDEX SCAN

Selected rows of the table can be accessed using an index and specific key values, because the
statement predicate specifies a string that can be used to directly access an index page. Data
pages will be accessed selectively during predicate resolution, when the predicate contains
search conditions on columns that are not in the search index, or when the search index has
VARCHAR or VARGRAPHIC columns.

3 NON-SELECTIVE INDEX SCAN

The table is accessed using an index without specific key values, because because the
statement predicate specifies a string that cannot be used to directly access an index page.

This happens:

- when the predicate operator does not allow direct index access (such operators are called
non key-matching; they are listed in the table Predicate operator evaluation on page 86),
for example : WHERE C1 IS NOT NULL

- when the predicate omits leading columns in a composite index, for example : WHERE
C2 = x (and the index is on C1,C2)

- when there is some other coding inefficiency in the predicate, such as: WHERE
C1=:HOSTVAR+10 or WHERE C1=:HOSTVAR (and the datatype of hostvar is not
compatible with that of C1)

Page 44 SQL Command Analysis

A non-selective index scan accesses all the pages of the index. It will also access table data
pages:

- when the predicate contains search conditions on columns not available in the search index
- when a column of the search index has the VARCHAR or VARGRAPHIC datatype

An index scan may be chosen by DB2 as an alternative for a DBspace scan, for example, when
the relational scan productivity is low (many pages not belonging to the table would be scanned
because the table's SYSCATALOG.PCTPAGES value is low). A true DBspace scan might be
performed under different circumstances, for instance when the table gets larger or when less
tables share the same DBspace. In some cases, a non-selective index scan may be worse than
a DBspace scan, since both index and data pages must be accessed, whereas a DBspace scan
accesses data pages only.

4 SELECTIVE OR NON-SELECTIVE INDEX-ONLY SCAN

All columns in the SELECT list and in the predicate are indexing columns and can be retrieved
without accessing the data pages. A selective index-only scan is the most efficient access path.

5 FULLY-QUALIFIED INDEX SCAN

All columns of a unique index can be used for the index scan.

ADDITIONAL SORT

DB2 performs an additional sort at the end of the query block. This may be caused by ORDER BY,
GROUP BY or SELECT DISTINCT clauses. Note that a small number of rows will be sorted by DB2
in storage with no I/O involved. Larger response sets will be sorted using internal DBspaces.

ATOPEN

A dependent block may be executed once when the corresponding parent block is initiated
(ATOPEN=YES) or it may be executed for each iteration in the parent block (ATOPEN=NO). In the
latter case, the iteration count of the dependent block is the product of its own estimated iteration and
that of its parent(s). If a block has multiple ancestors and each invocation has ATOPEN=NO, the
iteration count and the execution cost may become very high. Therefore SQL/CA will issue a warning.
However, high iteration rates may exist, even with an ATOPEN=YES block, because DB2 may save
the result of the dependent block in internal DBspaces and iteratively search these Dbspaces,
instead of executing the dependent query. This situation is not visible in the EXPLAIN results. In any
case, you should try to keep the number of matching subquery rows as low as possible. Using a
correlated subquery may reduce the size of the subquery result.

CHILD BLOCK

The opposite of parent block. See PARENT BLOCK.

SQL Command Analysis Page 45

CLUSTERED INDEX

An index is clustered if the sequence of its entries reflects the physical ordering of the table rows. The
clustering attribute of a given index is stored in SYSINDEXES as a flag and as a clustering ratio. The
latter is a value ranging from 0 to 10000 and represents the degree of clustering, where 10000 is the
optimal clustering ratio.

An index is termed "weak" by SQL/CA, if the SYSINDEXES flag says so, or if the clustering ratio
drops below 6000. The clusterratio on the SQL/CA index report equals the DB2 clusterratio divided
by 100.

Statement COST SUMMARY

The cost value from the DB2 explain cost table indicates for a given query block the total execution
cost estimate. This estimate includes the cost of eventual dependent blocks. For statements
containing multiple queries, SQL/CA provides a more refined cost computation method. For each
query block, following values are computed:

Single_Cost

The cost of the query block, not including the cost of the dependent and the ancestor blocks.

Exec_Times

The estimated number of invocations from all parent blocks. The number of invocations of the parent
blocks themselves and the ATOPEN flags are taken into account.

Multi_Cost

Single_Cost multiplied by Exec_Times.

SQL_Cost

The cost from the DB2 explain table i.e. the statement cost plus the cost of all its dependent blocks.

Highest_Subquery_Cost

The highest Multi_Cost found for a subquery in the statement.

For both single and multiple query statements, following cost information is provided:

Total Statement Cost

The cost estimate associated by DB2 with the statement as a whole.

ISQL-like Cost

(total_statement_cost / 1000) + 1. Interactive SQL systems such as ISQL present the Query Cost
Estimate in this format.

Page 46 SQL Command Analysis

COMPOSITE

When a statement is performed in several steps, the DB2 term "composite" refers to the response
set obtained thus far, as the result of execution in previous steps. In joins, the composite is also
termed the outer table.

DBSPACE SCAN

A synonym of RELATIONAL SCAN. Refer to the keyword ACCESS.

DBSPACE SCAN PRODUCTIVITY

A value computed by SQL/CA to estimate the percentage of table data actually accessed during a
DBspace scan. The value is taken from the PCTPAGES column in the SYSCATALOG row for the
table.

For critical, operational tables productivity should normally be 100%, that is, the table should have
its dedicated DBspace. Otherwise, a DBspace scan will imply unnecessary I/O by reading pages of
other tables and unproductive locks on pages that contain rows belonging to other tables.

DEFAULT FILTER FACTOR

The DB2 Optimizer may not be able to use significant filter factors during path selection. Default filter
factors are then adopted.

This will be the case when:

- no catalog statistics are available to compute the filter factor
- the predicate contains host variables (which do not have a value when the access strategy is

determined during program preprocessing)
- the predicate contains expressions
- disjunctive predicates are used, by means of the OR connector

When no catalog statistics are available, the default filter factor is as follows:

- for the = operator 0.040 (4% qualifying rows)
- for LIKE and BETWEEN 0.100 (10% qualifying rows)
- for all other operators 0.333 (30% qualifying rows)
- for the <> operator 0.960 (96% qualifying rows)

When statistics are available, the default filter is as follows:

- for the = operator 1/COLCOUNT (where COLCOUNT is the estimated number of
distinct values in the column)

- for all other operators see the default filter factor table on page 87.

SQL Command Analysis Page 47

ESTIMATED GLOBAL Statement FILTER FACTOR

Represents the fraction of table rows estimated to satisfy the statement predicate as

(estimated number of satisfying rows) / (sum of all rows of all tables accessed)

The filter value ranges from 0 to 1. The lower the value, the better the selectivity of the statement
predicate.

ESTIMATED EXECUTION ITERATION BY ANCESTOR BLOCKS

Using the TIMES column for all ancestor ("parent") blocks, SQL/CA computes the total number of
times this query block will actually be executed. The ATOPEN attribute of each ancestor block is also
taken into account.

ESTIMATED NUMBER OF ROWS PROCESSED

The ROWCOUNT column from the EXPLAIN Structure table. It indicates the estimated number of
rows returned for the table(s) used in this statement. The filtering factors associated with the columns
referenced in the statement predicate, intervene in estimating the size of the response set. The
ROWCOUNT column may be zero for small response sets. SQL/CA computes the total number of
table rows out of which the estimated number of rows is selected. For join statements, the total
counts the rows for all tables participating in the join. If the estimated value equals the number of
table rows, SQL/CA assumes a sequential table scan and issues a warning.

ESTIMATED TIMES PREDICATE CONDITIONS MET

The TIMES column from the EXPLAIN Structure table. It estimates the probability that the predicate
conditions of the statement will be true. It also shows how many times eventual dependent blocks
will be executed.

Page 48 SQL Command Analysis

FILTER FACTOR

For each column reference in the statement predicate, DB2 determines a filter factor, which
represents the fraction of table rows estimated to satisfy the predicate as:

estimated_number_of_rows / number_of_table_rows.

The filter is a value between 0.0 and 1.0. The lower the value, the better the column's selectivity. A
filter factor of 1 means the column has no selectivity at all. The filter factor depends on the distribution
of data values for the column. A column having a high number of unique values within the table, will
have a good selectivity, that is, a small filter factor. If an SQL statement supplies a search value for
such a column, the Optimizer knows that only a few number of rows will meet the condition and that
the response set will be small. This will reduce the statement execution cost and determine the
access strategy. A column with a small filter is also a good index candidate.

The filter factor chosen depends on the predicate operator used, as shown on page 86.

FULLY-QUALIFIED INDEX SCAN

Refer to the keyword ACCESS.

INDEX DISQUALIFIED

An index is present but not used by the optimizer, because the application statement specifications
are inhibiting it. The optimizer will use a DBspace scan or an index scan (scanning the entire table
using the index). Whether a DBspace or an index scan is chosen, depends on factors such as the
index clustering ratio, the percentage of table pages in the DBspace etc.

INDEX SCAN

Refer to the keyword ACCESS.

SQL Command Analysis Page 49

INDEX-ONLY SCAN

Refer to the keyword ACCESS.

KEYMATCHING

A predicate is called keymatching, when the columns used in the predicate can be formed into a
string that matches existing entries of the table index. Such a predicate allows direct retrieval of a
qualifying key and row. To be a candidate for keymatchinq, the predicate must be sargable.

Examples of key-matching predicates:

C1 = 1
C1 > 1

Examples of non key-matching predicates:

C1 <> 1
C2 NOT LIKE :VAR

Given a composite index on (C1,C2):

C1 = 1 is key-matching
C2 = 1 is not key-matching

MATERIALIZATION

View materialization is a technique used by DB2 version 3 in order to remove restrictions on the
processing of views. The feature implies storing of intermediate select results in internal tables. To
access these intermediate results, indexed access is never used by DB2. Hence the possibly
negative performance implications of view materialization.

MERGE SCAN JOIN

DB2 scans the composite and the new table in the order of the join column and joins rows with
matching columns. A sort operation may be necessary to access the new table and or the composite
in the required order and additional work dataspace (internal DBspaces) may be required. Therefore,
a merge scan join is usually less performant than a nested loop join.

METHOD

Represents the action performed by DB2 for a given plan: a merge scan join, a nested loop join, an
additional sort plan or a view materialization.

NESTED LOOP JOIN

For each row of the composite, matching rows of the new table are located and joined. An index may
be used to access the new table.

Page 50 SQL Command Analysis

NEW TABLE

When a join is being executed, this DB2 term refers to the new table that is being accessed in the
current step (plan) and joined to the data resulting from previous steps (the composite table). The
new table is also called the inner join table.

NO EXPLICIT SORT PLAN

The ordering clause requested by the statement can be satisfied using the index order without
requiring a specific sort operation.

NON-SELECTIVE INDEX SCAN

Refer to the keyword ACCESS.

PARENT BLOCK

In a multiple query structure, a parent or ancestor block is the subquery that initiates another
subquery, which in turn is called a child or dependent block.

PLAN

An SQL statement may be executed in several steps. Each step is called a plan by SQL EXPLAIN
and receives a plan number, representing the order in which the statement's plans are executed.
There are specific plans for join, sort and view materialization operations.

PREDICATE

The search condition in the WHERE clause of an SQL statement.

There are four types of predicates. They are, in decreasing order of performance:

Keymatching

A predicate is keymatching, when it can be applied against an index for direct retrieval of qualifying
keys. The predicate is applied by the DB2 Database Subsystem (DBSS).

Index sarg

An index sarg is a predicate that can by applied by the DB2 Database Subsystem (DBSS) against
keys in index leaf pages.

Data sarg

A data sarg is a predicate that can by applied by the DB2 Database Subsystem (DBSS) against
column values in data pages.

Residual

A residual predicate cannot be applied by the DB2 Database Subsystem (DBSS), but is evaluated
by the DB2 Relational Data System (RDS). This implies that DBSS must obtain all rows that are to
be evaluated by RDS.

SQL Command Analysis Page 51

RANGE PREDICATE

A range predicate contains the SQL verbs LIKE or BETWEEN or one of the range operators >, >=,
<, <=.

A DEFAULT FILTER FACTOR is used for a range predicate, when it has the format:

- Column range_operator Host variable
- Column range_operator Column
- Column LIKE expression
- Column BETWEEN expression AND expression

RESIDUAL

The opposite of SARGABLE. See SARGABLE.

SARGABLE

An expression is sargable if it can be evaluated by the DB2/VSE Database Subsystem (DBSS), that
is, while data is being retrieved from the I/O system. If the expression is not sargable (also called a
RESIDUAL expression) it is evaluated by the DB2/VSE Relational Data System (RDS) after calling
the Database Subsystem to obtain data. Filtering the data (testing whether they satisfy the predicate
specifications) at the RDS level causes additional DBSS calls and increases the processing
overhead.

Only sargable expressions are keymatching candidates. A predicate containing residual
expressions only, is resolved using an index or dbspace scan.

SCORE

An attempt to measure the efficiency of the DB2 access path. The higher the score, the better the
path.

One "point" is added to the score each time one of the following conditions is true:

- index access is being performed
- fully-qualified index access is being performed
- index-only access is being performed
- selective index access is being performed
- index access uses a highly-clustered index
- index access uses a unique index

The highest score is achieved, when all the above conditions are true. The highest score is 6. The
lowest score 0 indicates a DBspace scan.

SELECTIVE INDEX SCAN

Refer to the keyword ACCESS.

Page 52 SQL Command Analysis

UNCLUSTERED INDEX

The opposite of a clustered index. If the first index is unclustered, index reorganization is needed to
make the index clustered again. For a non-first index, the indexing column definition may be such
that the index will always be unclustered. A non-clustered index is less efficient than a clustered
index.

WEAKLY CLUSTERED INDEX

DB2 maintains a clustering ratio for each index as a value between 0 and 10000, where 10000 is the
best clustering ratio. If DB2 still considers the index as clustered, SQL/CA considers the index as
weakly clustered, if its clustering ratio drops below 6000. Also see UNCLUSTERED INDEX .

SQL Command Analysis Page 53

8 SQL/CA analysis warning messages
The following messages are issued by the Text Analysis component of SQL/CA. The part of the
statement predicate the message is referring to, will be printed before the message.

The periods in the message text are replaced by the column, hostvar or constant name, length or
datatype, whichever applies.

The following descriptive texts assume a predicate expression with the format "column
operator expression" (eg. column=constant). The inverse format (constant=column) is also handled
during analysis.

Most of the questionable conditions causing a warning, are fully described in the IBM publication
Performance Tuning Handbook for DB2/VSE (Document Number SH09-8111-00).

A severity code 1, 2 or 3 is associated with each warning. The higher the severity code, the higher
the assumed impact on statement performance. For some warnings, a higher severity code is issued
when the warning is related to an indexing column. The same warning has a lower severity if issued
for a non-indexing column.

AW01 Expression on index column .. is suboptimal

Reason

The predicate contains an arithmetic expression or a builtin function reference involving an indexing
column, such as colname-100 = 500 or colname =:hostvar+100. Such predicates are not
key-matching and not sargable.

Action

Transfer the expression to the other member of the predicate expression (in the first example:
"colname > 600") or compute the host variable expression (the second example) using host language
statements.

AW02 Datatype .. of column .. not compatible with datatype .. of column ..

Reason

An incompatibility has been found between the datatypes of the designated predicate columns. Such
predicates are not key-matching and not sargable. If an indexing column is involved, a warning
severity code 3 is issued, as this condition may prevent the optimizer from using an index. For
incompatible, non-indexing columns the severity code is set to 1.

Action

The easiest solution is to use identical datatypes. If this is not possible, use compatible datatypes.

Refer to the datatype evaluation table on page 85.

Page 54 SQL Command Analysis

 AW03 Datatype .. of column . not compatible with datatype .. of hostvar ..

Reason

An incompatibility has been found between the datatypes of the designated predicate column and
the host variable. Such predicates are not key-matching and not sargable. If an indexing column is
involved, a warning severity code 3 is issued, as this condition may prevent the optimizer from using
an index. For incompatible, non-indexing columns the severity code is set to 1.

Action

Refer to the datatype evaluation table on page 85.

AW04 Length .. of column .. exceeds length .. of column ..

Reason

An incompatibility has been found between the lengths of the designated predicate columns. Such
predicates are not key-matching and not sargable.If an indexing column is involved, a warning
severity code 3 is issued, as this condition may prevent the optimizer from using an index. For
incompatible, non-indexing columns the severity code is set to 1.

Lengths A and B are considered compatible if length(A) >= length(B), except for VARCHAR columns
with length < 254 and VARGRAPHIC columns with length < 127, which are compatible with all
character values, fixed or variable of any length.

For instance, if column A has been defined as CHAR(20), column B specified as CHAR(25) violates
the above rule.

Action

Ensure that the length of the right hand predicate expression is less than or equal to the length of the
left hand expression.

AW05 Length .. of hostvar .. exceeds length .. of column ..

Reason

An incompatibility has been found between the lengths of the designated host variable and the
predicate column. Such predicates are not key-matching and not sargable.If an indexing column is
involved, a warning severity code 3 is issued, as this condition may prevent the optimizer from using
an index. For incompatible, non-indexing columns the severity code is set to 1.

Lengths A and B are considered compatible if length(A) >= length(B), except for VARCHAR columns
with length < 254 and VARGRAPHIC columns with length < 127, which are compatible with all
character values, fixed or variable of any length.

For instance, if a table column has been defined as CHAR(20), a host variable specification of
CHAR(25) violates the above rule.

Action

Ensure that the length of the right hand predicate expression is less than or equal to the length of the
left hand expression.

SQL Command Analysis Page 55

AW06 Length .. of constant .. exceeds length .. of column ..

Reason

An incompatibility has been found between the lengths of the designated constant and the predicate
column. Such predicates are not key-matching and not sargable. If an indexing column is involved,
a warning severity code 3 is issued, as this condition may prevent the optimizer from using an index.
For incompatible, non-indexing columns the severity code is set to 1.

Lengths A and B are considered compatible if length(A) >= length(B), except for VARCHAR columns
with length < 254 and VARGRAPHIC columns with length < 127, which are compatible with all
character values, fixed or variable of any length.

For instance, if a table column has been defined as CHAR(20), a constant specification of length 25
violates the above rule.

Action

Ensure that the length of the right hand predicate expression is less than or equal to the length of the
left hand expression.

AW07 Precision .. of column .. exceeds precision .. of column ..

Reason

An incompatibility has been found between the precisions of the designated predicate columns. Such
predicates are not key-matching and not sargable. If an indexing column is involved, a warning
severity code 3 is issued, as this condition may prevent the optimizer from using an index. For
incompatible, non-indexing columns the severity code is set to 1.

Precisions A and B are considered compatible if precision(A) <= precision(B).

Precision applies to DECIMAL columns only and represents the total number of digits, including the
digits following the decimal point. For instance, if a table column A has been defined as DEC(2), a
column B specification of DEC(3) violates the above rule.

Action

Ensure that the precision of the right hand predicate expression is less than or equal to the precision
of the left hand expression.

Page 56 SQL Command Analysis

AW08 Precision .. of hostvar .. exceeds precision .. of column ..

Reason

An incompatibility has been found between the precisions of the designated host variable and the
predicate column. Such predicates are not key-matching and not sargable. If an indexing column is
involved, a warning severity code 3 is issued, as this condition may prevent the optimizer from using
an index. For incompatible, non-indexing columns the severity code is set to 1.

Precisions A and B are considered compatible if precision(A) >= precision(B).

Precision applies to DECIMAL columns only and represents the total number of digits, including the
digits following the decimal point. For instance, if a table column has been defined as DEC(2), a host
variable specification of DEC(3) violates the above rule.

Action

Ensure that the precision of the right hand predicate expression is less than or equal to the precision
of the left hand expression.

AW09 Precision .. of constant .. exceeds precision .. of column ..

Reason

An incompatibility has been found between the precisions of the designated constant and the
predicate column. Such predicates are not key-matching and not sargable. If an indexing column is
involved, a warning severity code 3 is issued, as this condition may prevent the optimizer from using
an index. For incompatible, non-indexing columns the severity code is set to 1.

Precisions A and B are considered compatible if precision(A) >= precision(B).

Precision applies to DECIMAL columns only and represents the total number of digits, including the
digits following the decimal point. For instance, if a table column has been defined as DEC(2), a
constant specified as DEC(3) violates the above rule.

Action

Ensure that the precision of the right hand predicate expression is less than or equal to the precision
of the left hand expression.

SQL Command Analysis Page 57

AW10 Scale .. of column .. does not match scale .. of column ..

Reason

An incompatibility has been found between the scales of the designated predicate columns. Such
predicates are not key-matching and not sargable. If an indexing column is involved, a warning
severity code 3 is issued, as this condition may prevent the optimizer from using an index. For
incompatible, non-indexing columns the severity code is set to 1.

Scales A and B are considered compatible if scale(A) = scale(B) where B is not a constant. Scale
applies to DECIMAL columns only and represents the total number of digits following the decimal
point.

Action

Ensure that the scale of the right hand predicate expression is equal to the scale of the left hand
expression or that the scale of a constant does not exceed the scale of the left hand expression.

AW11 Scale .. of column .. does not match scale .. of hostvar ..

Reason

An incompatibility has been found between the scales of the designated host variable and the
predicate column. Such predicates are not key-matching and not sargable. If an indexing column is
involved, a warning severity code 3 is issued, as this condition may prevent the optimizer from using
an index. For incompatible, non-indexing columns the severity code is set to 1.

Scales A and B are considered compatible if scale(A) = scale(B) where B is not a constant. Scale
applies to DECIMAL columns only and represents the total number of digits following the decimal
point.

Action

Ensure that the scale of the right hand predicate expression is equal to the scale of the left hand
expression or that the scale of a constant does not exceed the scale of the left hand expression.

AW12 Scale .. of column .. does not match scale .. of constant ..

Reason

An incompatibility has been found between the scales of the designated constant and the predicate
column. Such predicates are not key-matching and not sargable. If an indexing column is involved,
a warning severity code 3 is issued, as this condition may prevent the optimizer from using an index.
For incompatible, non-indexing columns the severity code is set to 1.

Scales A and B are considered compatible if scale(A) >= scale(B). Scale applies to DECIMAL
columns only and represents the total number of digits following the decimal point.

Action

Ensure that the scale of the right hand predicate expression is equal to the scale of the left hand
expression or that the scale of a constant does not exceed the scale of the left hand expression.

Page 58 SQL Command Analysis

AW13 Indicator variable used with NOT NULL column ..

Reason

An EQUALS predicate involves an indexing column defined as NOT NULL and a host variable
followed by an indicator variable. This causes the expression to become non-sargable. If an indexing
column is involved, a warning severity code 3 is issued, as this condition may prevent the optimizer
from using an index. For incompatible, non-indexing columns the severity code is set to 1.

Action

Omit the indicator variable, since the column can never be null.

AW14 Logical connector OR is suboptimal

Reason

A predicate is connected to a previous predicate in the same statement by means of an outer OR
connector (inner OR connectors are not warned). OR prevents the use of key-matching predicates.
Moreover, if an Or-ed predicate is not sargable, the entire statement predicate becomes not sargable.

Action

Use alternative predicate specifications for the OR connector, such as UNION, IN with a value list
etc.

 For example:

SELECT ... WHERE A=value_1 OR A=value_2 OR A=value_3 should be stated as:
SELECT ... WHERE A IN (value_1,value_2,value_3)

AW15 Logical connector NOT is suboptimal

Reason

A predicate of the type "NOT operand_1 operator operand_2" has been detected. Such predicates
are not sargable.

Action

Most of these predicates can be specified without the NOT connector.

"WHERE A >= B" is a better performer than "WHERE NOT A < B".

SQL Command Analysis Page 59

AW16 Predicate operator .. is not a key-matching candidate

Reason

The predicate operator displayed cannot be used for direct index access. This will cause additional
I/O requests during statement execution.

Action

If the statement logic allows it, select a key-matching operator. See the table Predicate operator
evaluation on page 86 and the Glossary on page 43 under KEY-MATCHING.

AW17 Predicate operator .. is not sargable

Reason

The predicate operator displayed will be evaluated by RDS and not by DBSS. This will cause
additional CPU consumption during execution.

Action

If if the statement logic allows it, select a sargable operator. See the table Predicate operator
evaluation on page 86 and the Glossary on page 43 under SARGABLE.

AW18 Default filter factor used for range predicate is ..

Reason

The default filter factor shown is used for the predicate, because it has the format

- COL range_operator HOSTVAR
- COL range_operator COL ("range_operator" is one of the operators >, >=, <, <=)
- COL LIKE expression
- COL BETWEEN expression AND expression

The default filter factor depends on the number of distinct values for the table column, as stated in
the table Default filter factor on page 87.

Action

You should try to keep the filter factor as small as possible, since it determines the estimated
statement's response set.

Use LIKE/BETWEEN instead of >, >=, <, <=. The default filter factor table shows that
LIKE/BETWEEN is three times more selective.

Ensure that a COLCOUNT is available: update the table statistics if it is not.

Page 60 SQL Command Analysis

AW19 Range predicates used with hostvars may disqualify the index

Reason

Predicate operators such as BETWEEN and LIKE, but also >, >=, <, <= are called "range operators".
When used with host variables, the selectivity of the predicate (i.e. the number of table rows that will
satisfy the predicate conditions) is unknown, since the values contained in the host variables are not
known at prep time. Therefore, DB2 applies default selectivity rules. These defaults are rather
pessimistic (a selectivity ranging from 20-30%) and may effectively disqualify the index, especially
on large tables, whereas the same SQL statement executed dynamically using ISQL or QMF, with
constants specified instead of hostvars, will use the index.

If an indexing column is involved, a warning severity code 3 is issued. For non-indexing columns the
severity code is set to 1.

Action

If range predicates cannot be avoided, specifying additional statement predicates may help the
optimizer to determine a more adequate selectivity. You can try to make an eventual DBspace scan
less productive and hence less attractive to the optimizer, by ensuring that the table's PCTPAGE
value is low, for example by putting a large infrequently accessed table in the same DBspace.
Dynamic statement execution can be considered, but this involves a serious programming effort
(except in CSP).

AW20 Datatypes .. (column ..) and constant .. incompatible
 Expression not sargable.

Reason:

The predicate is not sargable due to the datatype of the column and the implied datatype of the
constant.

Action

The warning can be avoided be re-specifying the items datatype.

Please refer to the table Decimal precision evaluation on page 85.

AW21 Datatypes .. (column ..) and .. (hostvar ..) incompatible
 Expression not sargable.

 Reason:

The datatypes of the involved column and host variable are such that their evaluation is not sargable.
Please refer to the table Decimal precision evaluation on page 85.

Action

The warning can be avoided be re-specifying the items datatype.

SQL Command Analysis Page 61

AW22 No predicate specifications for leading column(s) of plan index ..

Reason

The predicate specifies one or more columns that are part of a multicolumn index but omits leading
indexing columns. For instance: the index is defined on columns C1 and C2 and the predicate
references C2 only.

Action

Omitting leading index columns will lead to a non-selective index scan. Since the predicate is
incomplete, it cannot be used by the optimizer to directly access an index entry. Instead, the index
will be scanned sequentially to evaluate the predicate. During evaluation, data pages may also be
scanned.

AW23 No index columns referenced in the statement predicate for table (..) ..

Reason

For the designated table, no predicate is stated or the predicate states non-indexing columns only.
This may lead to a DBspace or an index scan.

Action

If the statement logic allows it, specify a predicate with indexing columns, or create an index for one
of the predicate columns.

AW24 JOIN predicate not index eligible

Reason

A join predicate has been found, but index use has been disqualified because the join columns do
not have the same datatype, length or scale. Note that the warning applies to the predicate as a
whole and that the offending predicate clause may not be displayed before the warning.

Action

Ensure that the join columns have identical characteristics.

Page 62 SQL Command Analysis

 in a process called transitive closure5

AW25 Missing search condition on JOIN statement

Reason

A join predicate (T1.COL1=T2.COL1) specifies additional predicates on the join columns. There
should be an equal number of additional predicates for both join columns. Omissions are completed
by the DB2 Optimizer only when the missing condition is sargable and an equijoin is being
performed. This was not the case for the statement predicate warned.

Action

Repeat the local predicate specified for the first join column as a local predicate for the other join
column.

A statement such as

SELECT * FROM TABA T1,TABB T2 WHERE T1.COL=T2.COL AND T1.COL>5

will result in AW25. Add the local predicate AND T2.COL>5. This gives the Optimizer a better choice
when determining the JOIN inner / outer table.

NOTE

- In general, try to specify as many local predicates as possible (that is, predicates other than the
join predicate). DB2 evaluates the local predicates before performing the join. Therefore, local
predicates reduce the size of the data to be joined, which has a beneficial performance impact.

- During a nested loop join, DB2 attempts to take the smallest table as the first one in the join (the
"outer" table). Specifying all local predicates helps the Optimizer during determination of the inner
or outer table.

AW26 Missing search condition on JOIN statement will be added by Optimizer

Reason

A join predicate (T1.COL1=T2.COL1) specifies additional predicates on the join columns. There
should be an equal number of additional predicates for both join columns. Omissions are completed
by the DB2 Optimizer only when the missing condition is sargable and an equijoin. This was the5

case for the statement predicate warned.

Action See the Notes under AW25 above.

The statement SELECT * FROM TABA T1, TABB T2 WHERE T1.COL=T2.COL AND T1.COL=5 will
result in AW26. The Optimizer adds the implied clause AND T2.COL=5.

SQL Command Analysis Page 63

AW27 A decimal scale (column ..) is incompatible with .. (column ..)
 Expression not sargable.

Reason:

One of the predicate columns is scaled DECIMAL and the other column is SMALLINT or INTEGER.
Therefore, the expression is residual. Please refer to the table Decimal precision evaluation on
page 85.

Action:

The warning can be avoided be re-specifying the datatype or scale of the items involved.

AW28 A decimal scale (column ..) is incompatible with .. (hostvar ..). Expression not sargable.

Reason:

One of the predicate elements is a scaled DECIMAL column and the other element is a SMALLINT
or INTEGER hostvar. Therefore, the expression is residual. Please refer to the table Decimal
precision evaluation on page 85.

Action:

The warning can be avoided be re-specifying the datatype or scale of the items involved.

AW29 Decimal precision < 4 (column ..) incompatible with SMALLINT (column ..). Expression not
sargable.

Reason:

One of the predicate columns is DECIMAL with precision < 4 and the other column is SMALLINT.
Therefore, the expression is residual. Please refer to the table Decimal precision evaluation on
page 85.

Action:

The warning can be avoided be re-specifying the datatype or precision of the items involved.

AW30 Decimal precision < 4 (column ..) incompatible with SMALLINT (hostvar ..). Expression not
sargable.

Reason:

One of the predicate elements is a DECIMAL column with precision < 4 and the other element is a
SMALLINT hostvar. Therefore, the expression is residual. Please refer to the table Decimal
precision evaluation on page 85.

Action:

The warning can be avoided be re-specifying the datatype or precision of the items involved.

Page 64 SQL Command Analysis

AW31 Decimal precision < 10 (column ..) incompatible with INTEGER (column ..). Expression not
sargable.

Reason:

One of the predicate columns is DECIMAL with precision < 10 and the other column is INTEGER.
Therefore, the expression is residual. Please refer to the table Decimal precision evaluation on
page 85.

Action:

The warning can be avoided be re-specifying the datatype or precision of the items involved.

AW32 Decimal precision < 10 (column ..) incompatible with INTEGER (hostvar ..). Expression not

sargable.

Reason:

One of the predicate elements is a DECIMAL column with precision < 10 and the other element is
an INTEGER hostvar. Therefore, the expression is residual. Please refer to the table Decimal
precision evaluation on page 85.

Action:

The warning can be avoided be re-specifying the datatype or precision of the items involved.

AW34 No predicate specifications for trailing column(s) of plan index ..

Reason

The plan index is a composite index and the predicate does not contain references for trailing index
columns. For instance: the index is defined on columns C1 and C2 and the predicate references C1
but not C2.

Action

If the omitted columns are not significant in the conditions stated by the predicate, this warning should
be ignored. Otherwise, specify the missing columns.

AW35 No predicate specifications for column(s) of plan index ..

Reason

The predicate does contain indexing column references (otherwise message AW23 would have been
produced), but the DB2 optimizer has opted for another table index (the "plan index"). No columns
of this index are referenced in the predicate.

Action

In most cases, you should examine why the intended index is not used. If that index is composite,
you probably do not specify all the indexing columns. The index could also have been discarded due
to its unclustered state or its weak clustering ratio.

SQL Command Analysis Page 65

AW36 BETWEEN is a more selective operator than ..

Reason

The predicate contains a range operator such as >, <, >= or <=. Such predicates are less selective
than BETWEEN. See the table Default filter factor on page 87.

Action

Replace the range operator indicated in the message with a BETWEEN or LIKE clause.

AW37 Predicate uses columns of the same table

Reason

The predicate has the form T1.column_1 <operator> T1.column_2. Such predicates are no key-
matching candidates and they are not sargable.

Action

Try to formulate the query so that different tables are used within the same predicate expression.
Consider replacing the COL=COL form with a COL=HOSTVAR specification.

AW38 Predicate using indicator variables is not sargable

Reason

Predicates with indicators are resolved by the Relational Subsystem, not by the Database
Subsystem. Additional processing overhead will be involved.

Action

There is usually no reason for using indicator variables in predicates, since the "unknown" predicate
state is functionally equivalent to the "false" state, that is, both are not "true".

AW39 JOIN is usually more efficient than a subquery

Reason

A join access often outperforms a nested quey.

Action

Many nested queries can be formulated as a JOIN.

Page 66 SQL Command Analysis

AW40 All predicates residual due to residual OR-ed predicate

Reason

A query contains multiple predicates and at least one of them is connected (at the outer level) by
means of the OR connector. All non-OR-ed predicates are sargable, but one or more of the OR-ed
predicates is not. This makes the whole predicate non-sargable.

For example :

WHERE C1=5 OR C2=C3

If C1, C2 and C3 are columns of the same table:

C1=5 is sargable
C2=C3 is residual (and you get warning AW37)

Due to the OR connector however, the entire predicate is residual.

Action

Try to avoid OR-ed predicates. If you can't, try to make the OR-ed predicate residual. In most cases,
you will have an SQL/CA warning indicating why that predicate is residual.

SQL Command Analysis Page 67

AW41 UNION ALL may avoid unnecessary sort

Reason

Multiple UNION's are specified. Since UNION eliminates duplicate rows, multiple sorts are possible.
These sorts can be avoided by replacing all UNION's, except for the last one, by UNION ALL.
UNION ALL does not eliminate duplicates.

Action

Specify UNION ALL except for the last UNION.

For example:

SELECT_1
UNION
SELECT_2
UNION
SELECT_3

may cause 2 sorts

The above statement can be replaced with:

SELECT_1
UNION ALL
SELECT_2
UNION
SELECT_3

and will perform 1 sort

AW42 One or more predicates should be specified before the subquery.

Reason:

The statement contains a subquery and other predicates are specified AFTER the subquery.

For example :

SELECT ... FROM T
WHERE C1 = 1
AND C2 IN (SELECT... FROM T2)
AND C3 = 3

Action:

It is best to specify all normal predicates BEFORE the subquery. This will reduce the number of
qualifying rows that is passed to the subquery. In the above example C3 = 3 should be placed before
the subquery.

Page 68 SQL Command Analysis

AW43 MIN/MAX function is less efficient due to presence of WHERE clause

Reason:

The MIN/MAX functions can be executed using an index-only access. Moreover, the MIN function
can retrieve the required value directly from the first index entry. The MAX function can retrieve the
value directly from the last index entry.

The presence of a WHERE clause requires a complete index scan and possibly access to data
pages when the predicate column is not in the index.

Action:

Omit the WHERE clause, if possible.

AW44 MIN/MAX function is less efficient because <column-name> if not the first column in the
index

Reason:

The MIN function can retrieve the required value directly from the first index entry. The MAX function
can retrieve the value directly from the last index entry. In both cases, the named column must be
the first or only column in the index.

Action:

Specify MIN/MAX for the first index column, if possible.

SQL Command Analysis Page 69

AW45 MAX function is less efficient because index column <column-name> allows NULL values

Reason:

The MAX function can retrieve the MAX value directly from the last index entry, provided the column
has been defined as not null. If the column allows nulls, the null index entries appear in the index
after the highest not null entries. Hence, a fast "locate last" cannot be performed.

Action:

Redefine the column with the NOT NULL attribute, if possible.

AW46 MIN/MAX function is less efficient because <column-name> is not a column in the plan
index

Reason:

The index used in the SQL statement does not have the named column as the first index column.
Therefore, fast index locate is not used.

Action:

Attempt to rewrite the statement, so that the index containing the column specified in the MIN/MAX
function, is used for access.

AW47 Full table join performed because no local join predicates specified

Reason:

The join statement does not contain predicates other than the join predicate.

Action:

Unless a full table join is intended, specify other predicates in the WHERE clause, to decrease the
number of table rows participating in the join.

Page 70 SQL Command Analysis

AW48 A sort can be avoided if the ORDER BY clause specifies all columns of the plan index
<index-name> in the same sequence

Reason:

The plan index used allows to avoid ORDER BY processing (additional sort). However, all columns
of the plan index must appear in the ORDER BY clause in the same sequence as defined for the
index. If not, a sort will be performed at the end of the query.

For example: if the plan index is on C1,C2

SELECT C1,C2 FROM table
WHERE C1 = ...
ORDER BY C2

will not avoid a sort

SELECT C1,C2 FROM table
WHERE C1 = ...
ORDER BY C1,C2

will avoid a sort

Action:

Specify all index columns on the ORDER BY clause (unless another sequence is desired).

AW49 <column-name> missing

Reason:

When not all index columns are key-matching (warning AW92 has been issued), the AW49 warning
indicates that the index column <column-name> is not keymatching, because it is not referenced in
the predicate.

For example:

Given an index C1,C2,C3,

the predicate WHERE C1 = x AND C2 = y will result in warning AW49 for column C3.

Action:

Specify the missing column if possible.

SQL Command Analysis Page 71

AW50 <column-name1> discarded by missing column <column-name2>

Reason:

When not all index columns are key-matching (warning AW92 has been issued), the AW50 warning
indicates that the index column <column-name1> is not key-matching because the column
<column-name2> that precedes it in the index definition, is missing.

For example:

Given an index C1,C2,C3

the predicate WHERE C1 = x AND C3 = y

will result in warning AW50, indicating that C3 cannot be used for key-matching because C2 is
missing.

Action:

Specify the missing column if possible.

AW51 <column-name1> discarded by non-keymatching column <column-name2>

Reason:

When not all index columns are key-matching (warning AW92 has been issued), the AW51 warning
indicates that the index column <column-name1> is not keymatching because the column
<column-name2> that precedes it in the index definition, is not key-matching. Warning AW54 will
have been issued for column-name2.

For example:

Given an index C1,C2,C3

the predicate WHERE C1 <> x AND C2 = y

will result in warning AW51, indicating that C2 (although a keymatching expression itself) cannot be
used for keymatching because it follows a non-keymatching expression on C1.

Action:

If possible, make the expression on column-name2 keymatching (cfr AW54).

Page 72 SQL Command Analysis

AW52 <column-name1> discarded by non-sargable column <column-name2>

Reason:

When not all index columns are key-matching (warning AW92 has been issued), the AW52 warning
indicates that the index column <column-name1> is not keymatching because the column
<column-name2> that precedes it in the index definition, is not sargable and therefore not
key-matching. Warning AW55 will have been issued for column-name2.

For example:

Given an index C1,C2,C3

the predicate WHERE C1 = (:V*2) AND C2 = y

will result in warning AW52, indicating that C2 (although a keymatching expression itself) cannot be
used for key-matching because it follows a non-sargable and therefore non-keymatching expression
on C1.

Action:

If possible, make the expression on column-name2 sargable (cfr AW55).

SQL Command Analysis Page 73

AW53 <column-name1> discarded by range predicate on <column-name2>

Reason:

When not all index columns are key-matching (warning AW92 has been issued), the AW53 warning
indicates that the index column <column-name1> is not keymatching, because a range predicate has
been coded for column-name2.

For search conditions on composite indexes to be key-matching, all but the last column must be
matched with equal predicates; the last predicate can be either an equal or a range predicate.

For example:

Given an index C1,C2,C3

the predicate WHERE C1 > x AND C2 = y AND C3 = z

will result in warning AW53, indicating that the expressions on C2 and C3 (although themselves
keymatching) have been discarded as keymatching candidates, because a range expression has
been coded for C1.

Action:

Avoid the range predicate, if the application logic allows it.

The performance impact of AW53 may be severe, if the discarded columns are the most selective
ones.

In the above example: if C1 is non-selective, but C2 and C3 are, a large number of rows will be
retrieved for C1 > x, resulting in a high number of I/O's. The predicates on C2 and C3 will be applied
by RDS after receiving the rows qualifying for C1 > x.

In such cases, it may be necessary to define a new index, or to alter an existing one. In the above
example, an index on C2,C3,C1 would perform much better.

Page 74 SQL Command Analysis

AW54 <column-name> non-keymatching

When not all index columns are key-matching (warning AW92 has been issued), the AW54 warning
indicates that the index column <column-name> is not key-matching.

For example:

Given an index C1,C2,C3

the predicate WHERE C1<> x AND C2 = y

will result in warning AW54, indicating that C1 is a non-keymatching expression.

Action:

If possible, make the expression on column-name key-matching (cfr AW16).

AW55 <column-name> non-sargable and non-keymatching

Reason:

When not all index columns are key-matching (warning AW92 has been issued), the AW55 warning
indicates that the index column <column-name> is not sargable and therefore not key-matching.

For example:

Given an index C1,C2,C3

the predicate WHERE C1 = (:V*2) AND C2 = y

will result in warning AW55, indicating that the expression on C1 is not sargable and therefore not
key-matching.

Action:

If possible, make the expression on column-name sargable. In the above example, the application
should execute the *2 on the hostvariable and specify the predicate as C1 = :V.

SQL Command Analysis Page 75

AW56 Multiple IN operators disable keymatching

Reason:

When not all index columns are key-matching (warning AW92 has been issued), the AW56 warning
indicates that some expressions, although key-matching themselves, may have been discarded,
because more than one IN operator appears in the predicate.

For example:

Given an index C1,C2,C3 and the predicate

WHERE C1 IN (1,2) AND C2 IN (1,2) AND C3 = x

the expression on C3 will not be considered for key-matching, because more than one IN precedes.

Action:

If possible, avoid using more than one IN operator in a WHERE clause.

Page 76 SQL Command Analysis

AW57 Avoid fetching columns in an EXISTS SELECT with an index-only predicate

Reason:

If the SELECT that follows the (NOT) EXISTS clause, uses indexing columns only to perform the
EXISTS check, there is no reason to fetch columns in this SELECT.

If you do, DB2/VSE will unnecessarily access data pages, with a performance degradation as a
result.

Action:

Replace the column names with a constant or a special register such as CURRENT DATE. This
ensures that DB2 accesses index pages only when executing the SELECT.

For example:

If both T1 and T2 have an index on C1, the statement:

SELECT COUNT(*) FROM T1 WHERE EXISTS (SELECT * FROM T2 WHERE T1.C1 = T2.C1)

should be coded as:

SELECT COUNT(*) FROM T1 WHERE EXISTS (SELECT 'XXX' FROM T2 WHERE T1.C1 = T2.C1)

SQL Command Analysis Page 77

AW80 Using scan of DBspace

Reason:

The DB2 explain data show that the statement plan will be executed using a scan of the named
DBspace. SQL/CA provides following additional data regarding the DBspace scan:

DBspace pages scanned:
the number of DBspace pages that actually wil be read during the scan, that is the number of active
pages in the DBspace, as found in the SYSDBSPACES catalog.

DBspace scan productivity:
a percentage computed to represent the number of DBspace pages read that belong to the table
referred to by the statement plan.

Action:

While in some cases a DBspace (or relational) scan may be the most plausible access method (a
small table residing in a dedicated DBspace for instance), it is problematical in most cases. It may
be due to various reasons such as:

- the absence of table indexes
- the unclustered state of the table indexes
- a high estimate for the number of rows satisfying the statement predicate
- syntactical expressions prohibiting index eligibility
- a high PCTPAGES value for the table, meaning that the table occupies a large percentage of

pages in the DBspace, so that a DBspace scan seems productive and hence attractive to the
Optimizer

In most cases, other SQL/CA warning messages will have been issued. Use them to determine the
reason of the DBspace scan.

AW81 No indexes for table
AW81 Insert using default rules

Reason:

No indexes have been defined for the table. Therefore, a DBspace scan will be used to access the
table and insert will be done in the last datapage of the table.

Action:

Create a table index, unless the table is small and residing in a dedicated DBspace.

Page 78 SQL Command Analysis

AW82 No highly clustered first index for table

Reason:

The first index of the table is either unclustered or weakly clustered. An index is considered weak by
SQL/CA, when its clustering ratio drops below 6000. (10000 is the highest and best clustering ratio).

Action:

Reorganize the first index or the entire table.

AW83 No indexes found created using current DB2 release

Reason:

All existing table indexes were created by a backlevel release of DB2.

Action:

For best performance, the indexes should be upgraded to the latest release level, by doing a table
reorganization.

AW84 Non-selective index scan

Reason :

All rows of the table are accessed using an index without specific key values, because the first
column of the index key is not specified in the predicate.

In some cases an index scan may be a masked relational scan which may turn into a true DBspace
scan (when the table gets larger for instance).

Access with specific key values is obviously better for performance because less I/O will be done.
See the Glossary on page 43 under SELECTIVE INDEX SCAN.

Action :

Specify the leading columns of the index key, wherever possible. Also check whether enough
indexes are available for the columns appearing in the predicate.

AW85 Materialization of view

Reason:

View materialization is a technique used by DB2 since version 3, in order to remove certain
restrictions regarding views. Processing a materialized view implies storing intermediate results into
temporary tables using internal DBspaces. These temporary tables are processed without using
indexes.

Action:

Functionality has to be weighted against performance. An attempt should be made to keep the
response set small.

SQL Command Analysis Page 79

AW86 Estimated times predicate conditions satisfied

Reason:

The number of times the statement predicate is true equals the number of table rows. This means
that the entire table is processed. The message may occur in conjunction with the messages AW80
and AW84.

Action:

See the suggestions at AW80 and AW84.

AW87 Block executed N times by parent block

Reason:

A child block may be executed once, when the parent block is initiated or it may be executed each
time the parent block is invoked. The latter case is signalled by this warning which computes in N,
the total estimated number of times this block is executed, taking into account its immediate and
remote parent block invocation counts.

Action:

The actual execution time of the block is the product of all preceding parent block execution
iterations. As the number of iterations can become very high, care should be taken. Alternative
predicate statements may produce better results.

For example:

in the statement:

SELECT * FROM T1 WHERE C1 IN (SELECT C1 FROM T2)

the SELECT FROM T2 is executed for each row of T1. For a large T1, such SELECT statements may
take hours!

Alternatives would be:

- a JOIN of T1 and T2 (the preferred solution)
- SELECT * FROM T1 X WHERE EXISTS (SELECT C1 FROM T2 WHERE C1=X.C1)
- a correlated query such as SELECT * FROM T1 X WHERE C1 IN (SELECT C1 FROM T2

WHERE C1=X.C1)

Page 80 SQL Command Analysis

AW88 Indexing columns updated by statement

Reason:

The column listed is member of an index definition. Updating a column of the primary table or plan
index, using an UPDATE or a SELECT FOR UPDATE statement will disqualify indexed access.

Action:

If the named indexing column is not part of the primary table or plan index, a severity 1 warning will
be issued and the warning may be ignored. In the other case, the severity of the warning will be 3
and the update should be replaced with a DELETE and INSERT sequence. Primary indexing
columns should not appear in a SELECT FOR UPDATE clause, even if the column is not updated
actually. In CSP terms, define indexing columns with the read-only attribute in the SQL record.
Alternatively, remove the indexing column from the FOR UPDATE clause in the CSP process.

AW89 Merge scan Join

Reason:

A merge scan join is performed as part of a join plan. Merge scan joins are usually worse for
performance than nested loop joins, since a merge scan join often implies the use of work dataspace
and additional sorting.

Action:

Try to obtain a nested loop join. For example: define an index that allows the Optimizer to access the
inner join table in the required order. Ensure that the available indexes are clustered.

AW90 Outer table larger than inner table.

Reason:

A nested loop join is performed as part of a join plan. Best performance is generally achieved when
the outer table (the first or "composite table") is smaller than the inner table (the second or "new
table"). The tablesizes considered take into account the local (non-join) predicates, since these are
applied by DB2 before initiating the join.

Action:

Specify additional local (non-join) predicates for the outer table in the statement's WHERE clause.

AW91 Data pages accessed for predicate and data

Reason:

The predicate cannot be resolved using index page access and all data is retrieved from data pages.

Action:

If the selected data are not available from an index, retrieving data from the data pages is normal.
You should investigate why no index is used for resolving the predicate. If the index contains
VARCHAR columns, the data pages must be accessed.

SQL Command Analysis Page 81

AW92 Key-matching columns: N out of M

Reason:

The predicate does not specify all columns of the plan index, i.e. N < M.

Action:

Try to specify the missing index columns. You should find their names in warning AW22 or AW34.

Page 82 SQL Command Analysis

AW93 No catalog statistics available for the table

Reason:

No UPDATE STATISTICS statement has been issued for the table.

Consequently, no information is available the DB2/VSE Optimizer for determining the best data
access path.

Action:

Issue the UPDATE STATISTICS statement for the table or DBspace.

AW94 Catalog statistics available for index columns only

Reason:

An UPDATE STATISTICS statement has been issued for the table without the ALL option.

Consequently, the DB2/VSE Optimizer has statistics for the first column of the indexes only.

Action:

Issuing an UPDATE ALL STATISTICS for the table or DBspace may result in a better access path
being adopted by the DB2/VSE Optimizer.

Consider an UPDATE ALL STATISTICS for statements that perform poorly or that do not execute
using the expected access path.

SQL Command Analysis Page 83

9 SQL/CA object notes
All the object warnings are followed by a list of objects, for which the warning applies.

ON01 DBspaces with freespace > 0:

The named DBspaces have the FREEPCT column > 0. Freespace is usually set when initially loading
the DBspace and set then set to 0. This allows INSERT statements to use the DBspace freespace.

ON02 DBspaces with less than 10 active pages and with lockmode not "row":

Very small DBspaces should usually have the row lockmode. Other modes will lock too much data
for each request and will be detrimental for concurrency.

ON03 DBspaces in storage pool 1:

In operational databases, DBspaces should be located in other storage pools. Storage pool 1 should
be reserved for the DB2/VSE catalog tables and the internal system DBspaces.

ON04 Tables with more than 10% overflow rows:

Tables with more than 10% overflow rows should be considered for reorganization.

ON05 Tables with less than 10 pages and non-unique indexes:

While indexes can provide faster access, they also impose a considerable overhead, especially
during table update or insert activity. The designated indexes are not required to implement key-
uniqueness or to implement referential constraints. For small tables, residing in a dedicated
DBspace, a DBspace scan is probably the best access strategy.

ON06 Indexes with VARCHAR or VARGRAPHIC columns:

Indexes with VARCHAR or VARGRAPHIC columns prevent index-only access. Even when all data
could be retrieved using the index, data pages must still be accessed for VARCHAR and
VARGRAPHIC columns.

ON07 Indexes where the first column is not the most selective one:

In composite indexes, it is best to define the most selective column as the first index column. For the
designated indexes, non-first columns actually have a better selectivity than the first one.

Note The above message will be issued only when an UPDATE ALL STATISTICS has been
issued for the table, which ensures that the selectivity of all table columns is known. In the
other case, the selectivity of the first index column only is known.

Page 84 SQL Command Analysis

SQL Command Analysis Page 85

 The rationale behind this: when comparing an INTEGER column and a SMALLINT variable; the6

variable contents can never exceed the magnitude of the column and a simple comparison is sufficient.
When comparing a SMALLINT column with an INTEGER variable, the variable contents can exceed
the magnitude of the column and a more sophisticated comparison is needed. The latter comparison
cannot be performed by the DBSS (which basically performs byte-wise comparisons). It has to be carried
out by the RDS. Therefore, an incompatible expression is never sargable.

10 Predicate evaluation tables

10.1 Datatype evaluation table
The following table illustrates the rules governing datatype compatibility. Datatype combinations
marked Y are compatible. Those marked N are not compatible.

For example: comparing an INTEGER column with a SMALLINT host variable adheres to the
compatibility rules. Comparing a SMALLINT column with an INTEGER host variable violates these
rules.6

Column Hostvar Hostvar Hostvar Hostvar Hostvar
Type SMALLINT INTEGER DECIMAL REAL FLOAT

SMALLINT Y N N N N

INTEGER Y Y N N N

DECIMAL Y Y Y N N

REAL Y Y Y Y N

FLOAT Y Y Y Y Y

10.2 Decimal precision evaluation table
The following table defines the rules which the datatype, precision and scale of decimal columns and
hostvars must adhere to, in order to be sargable.

Column SMALLINT INTEGER DECIMAL(k,l)
Type Hostvar Hostvar Hostvar

DECIMAL(m,n) ensure: ensure: ensure:
m>=4 and n=0 m>=10 and n=0 m>=k and n=l

Page 86 SQL Command Analysis

 Q is one of the quantifiers ANY, ALL or SOME7

10.3 Predicate operator evaluation table

OPERATOR KEYMATCH SARGABLE DEFAULT FILTER

= yes yes 0,04

> < >= <= value yes yes 0,333

BETWEEN yes yes 0,1

IS NULL yes yes 0,04

IN(valuelist) yes yes 0.040*(size-of-list)

LIKE char yes yes 0,1

= Q (query)7 yes yes 0,04

> < >= <= Q (query) yes yes 0,333

<> Q (query) no yes 0,96

<> value no yes 0,96

IS NOT NULL no yes 0,96

= (query) no no 0,04

<> (query) no no 0,96

> < >= <= (query) no no 0,333

= expression no no 0,04

<> expression no no 0,96

> < >= <= expression no no 0,333

[NOT] IN(query) no no 1

LIKE pattern no no 0,1

LIKE host variable no no 0,1

NOT BETWEEN no no 0,9

NOT IN(valuelist) no no 1-(0.040*(size-of-list))

NOT LIKE no no 0,9

SQL Command Analysis Page 87

10.4 Default filter factor table

Distinct table column values Range filter factor LIKE/BETWEEN filter factor

>= 100 000 000 0,0001 0,00003

>=10 000 000 0,0003 0,0001

>=1 000 000 0,001 0,0003

>= 100 000 0,003 0,001

>= 10 000 0,01 0,003

>= 1 000 0,033 0,01

>= 100 0,1 0,03

< 100 0,333 0,1

= -1 0,333 0,1
(no COLCOUNT available)

Page 88 SQL Command Analysis

SQL Command Analysis Page 89

11 SQL/CA messages
SQLCA003: Application nnnn does not contain static SQL statements

The analyzed source does not contain static (prepped) analysable SQL statements at all.

SQLCA005: RC xx VSAMRC yy AFTER {PDSOPEN | PDSWRITE}

An error has occurred when opening or writing to the SQL/CA Report Library using PDSAM.

XX represents the hexadecimal PDSAM returncode as follows:

08 ACB CONTAINS INVALID SPECIFICATIONS
0C MEMBER NOT FOUND FOR DISP=OLD
10 VSAM ERROR (DETAILS IN ACBVSAMRC)
14 PDSOPEN HAS NOT BEEN ISSUED
18 INVALID RECORD LENGTH ON OUTPUT

YY represents the hexadecimal VSAM errorcode when XX=10

Action

If XX=10, use the value of YY to determine the VSAM errorcode. These errorcodes are
documented in the VSE Messages and Codes manual.

In other cases, call for software support.

SQLCA007: SQLCODE ... WHEN CONNECTING DATABASE

Issued when a CONNECT to the database fails.

SQLCA011: ALL HOSTVAR REFERENCES REPLACED WITH CONSTANTS.

Issued when the SQL EXPLAIN statement results in an SQLCODE indicating incompatible
parameter marker usage. Since an EXPLAIN statement cannot contain hostvariables, SQL/CA
replaces them with parameter markers. Hostvariables and parameter markers are compatible,
except for a number of cases, described in the IBM manual "DB2 Application Reference"
(PREPARE statement). If such an exception is detected, SQL/CA replaces all hostvariable
references with a constant specification of the corresponding format and retries EXPLAIN with
the modified statement.

SQLCA012: TABLE (creator) tablename DOES NOT EXIST

The DB2 object name extracted from the SQL statement is neither a table, a view or a synonym.
Analysis for the application is aborted.

SQLCA013: BASE TABLE (creator) tablename DOES NOT EXIST

The application statement references a view. When processing the view definition, SQL/CA is
unable to locate the underlying table. Analysis for the application is aborted.

SQLCA014: UNABLE TO LOCATE INDEX indexname

The indexname occurring in the explain PLAN table is not found in the SQL/CA index list. This
is probably an SQL/CA system error.

Page 90 SQL Command Analysis

SQLCA017: SQLCODE ... ON EXPLAIN Statement

An SQLCODE has been returned when invoking SQL EXPLAIN for the application statement
displayed immediately before the above message. The application statement is probably in error
and will not appear in the analysis report.

SQL Command Analysis Page 91

12 Index
Analysis

Interactive (14, 17, 19, 20, 30, 45)
Report (1, 2, 6-9, 22, 25, 27, 29, 90)
Source text (1, 2, 25)
Summary (8)
Warnings (53)

Analysis report
Interpreting (29)
Object lists (7)
Severity code (4, 6, 53-58, 60)

Clustered index (36, 45, 51, 52)
Column reference details (39)
Database

Database Services (1)
DBSPACE

Scan (3, 4, 6, 8, 34, 36, 43, 44, 46, 48, 51, 60, 77, 78, 83)
Scan productivity (3, 34, 46, 77)

Environment (1, 7)
Explain (2-4, 9, 15, 27, 29, 30, 32, 39, 44, 45, 47, 50, 77, 89, 90)
Explain tables (2, 9, 15, 27, 29, 32)

Cost table (45)
Plan table (31, 89)
Reference table (39)

Functional description (1)
Glossary (6, 9, 22-24, 37, 43, 59, 78)
Help (9, 21, 22, 60)
Host variables (6, 46, 60)
Index (5)

Index definition (8, 71, 72, 80)
Index disqualified (48)
Index reorganization (52)
Index scan (3, 4, 6, 31, 34-36, 43, 44, 48, 50, 51, 61, 68, 78)
Indexing column (6, 52-58, 60, 64, 80)
Unclustered index (52)

Installation (9, 11, 12, 15)
ISQL (1, 17, 18, 25, 30, 45, 60)
Messages (9, 22, 27, 40, 53, 77, 79, 89)
Performance (1, 5, 6, 15, 30, 35, 49, 50, 53, 62, 73, 76, 78, 80)
Predicate

Datatype compatibility (5, 85)
Filter factor (3, 6, 32, 39, 46-48, 51, 59, 65, 87)
Operator (5, 6, 39, 43, 46, 48, 51, 53, 58, 59, 65, 75, 86)
Residual (50, 51, 63, 64, 66)
Selectivity (3, 6, 32, 39, 47, 60, 83)

Predicates
Sargable (3, 5, 6, 39, 49, 51, 53-60, 62-66, 72, 74, 85, 86)

Prep (60)
QMF (1, 17, 18, 25, 60)
SQL Command

Dependent query (44)
Execution method (3, 27, 33, 45, 49, 77)
Execution tree (2, 3, 29)
Join (3, 4, 6, 31-33, 37-39, 47, 49, 50, 61, 62, 65, 69, 79, 80)

Page 92 SQL Command Analysis

Merge scan join (31, 33, 37, 49, 80)
Nested loop join (31, 33, 49, 62, 80)
New JOIN table (33, 37, 38, 49, 50, 80)
Parent block (4, 29, 30, 32, 44, 50, 79)
Predicate (3-6, 27, 32, 35, 36, 39, 40, 43, 44, 46-51, 53-66, 68-81, 85, 86)
Sort (3, 31, 33, 37, 44, 49, 50, 67, 70)
Subquery (2-4, 29, 30, 32, 44, 45, 50, 65, 67)

SQL/CA
Functional description (1)
Glossary (6, 9, 22-24, 37, 43, 59, 78)
Installation (9, 11, 12, 15)
Messages (9, 22, 27, 40, 53, 77, 79, 89)
Text analysis (2, 4, 5, 40, 53)

Statistics
Update (7, 82)

Structure table (32, 47)
View (1, 3, 4, 35, 49, 50, 78, 89)

Materialization (3, 4, 35, 49, 50, 78)
View

References (4)
Weakly clustered index (52)

